Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39339216

RESUMEN

Methotrexate (MTX), which presents high inter-individual variability, is part of the Brazilian Osteosarcoma Treatment Group (BOTG) protocol. This work aimed to develop a MTX population pharmacokinetic model (POPPK) for Brazilian children with osteosarcoma (OS) following the BOTG protocol to guide rescue therapy and avoid toxicity. The model was developed in NONMEM 7.4 (Icon®) using retrospective sparse data from MTX therapeutic drug monitoring of children attending a southern Brazilian public reference hospital. Data were described by a two-compartment model using 216 MTX cycles from 32 patients (5-18 y.o.) with OS who received 12 g/m2 dose/cycle. To explain inter-individual and inter-occasion variability in clearance and peripheral volume, covariates from demographic and biochemical data were evaluated. Serum creatinine was a significant covariate of MTX clearance (14.8 L/h), and the body surface area (BSA) was significant for central compartment volume (82.5 L). Inter-compartmental clearance and volume of peripheral compartment were 0.178 L/h and 5.72 L, respectively. The model adequately describes MTX exposure in Brazilian children with OS. Successful simulations were performed to predict MTX concentrations in pediatric patients above five years old with acute kidney injury and anticipate rescue therapy adjustments.

2.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38282365

RESUMEN

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Asunto(s)
Nanocápsulas , Esquizofrenia , Ratas , Animales , Fumarato de Quetiapina/farmacocinética , Dopamina , Nanocápsulas/química , Esquizofrenia/tratamiento farmacológico , Lípidos
3.
Pharmaceutics ; 15(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513968

RESUMEN

Voriconazole is a triazole antifungal used empirically for the treatment of complicated meningitis associated with Cryptococcus neoformans. Biopsy studies show that the drug exhibits adequate brain penetration although levels of cerebral spinal fluid (CSF) are highly variable. Considering that CSF is one of the main surrogates for CNS exposure, the present work proposed the building of a population pharmacokinetic modeling (popPK) model able to describing the exposure achieved by voriconazole in the plasma, interstitial cerebral fluid and CSF of healthy and infected rats. The developed popPK model was described by four compartments, including total plasma, free brain and total CSF concentrations. The following PK parameters were determined: Km = 4.76 mg/L, Vmax = 1.06 mg/h, Q1 = 2.69 L, Qin = 0.81 h-1 and Qout = 0.63 h-1. Infection was a covariate in the Michaelis-Menten constant (Km) and intercompartmental clearance from the brain tissue compartment to central compartment (Qout). Simulations performed with the popPK model to determine the probability of reaching the therapeutic target of fAUC > MIC showed that VRC has sufficient tissue exposure in the interstitial fluid and in the CSF for the treatment of fungal infections in these tissues at prevalent minimum inhibitory concentrations.

4.
Eur J Pharm Sci ; 189: 106546, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517670

RESUMEN

We previously reported that ciprofloxacin (CIP) free lung interstitial concentrations are decreased by biofilm-forming Pseudomonas aeruginosa pulmonary chronic (14 d) infection. To get a better understanding on the influence of infection on CIP lung distribution, in the present study free lung interstitial fluid and epithelial lining fluid (ELF) concentrations were determined by microdialysis in biofilm-forming P. aeruginosa acutely (2 d) and chronically infected (14 d) Wistar rats following CIP 20 mg/kg i.v. bolus dosing. A popPK model was developed, using NONMEM® (version 7.4.3) with FOCE+I, with plasma data described as a three-compartment model with first-order elimination. For lung data inclusion, the model was expanded to four compartments and ELF concentrations were described as a fraction of lung levels estimated as a distribution factor (ƒD). Acute infection had a minor impact on plasma and lung CIP distribution and both infection stages did not alter ELF drug penetration. Probability of target attainment of ƒAUC0-24/MIC ≥ 90 using 20 mg q8h, equivalent to 400 mg q8h in humans, showed that CIP free concentrations in plasma are adequate to successfully treat lung infections. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection. However, lung and ELF free interstitial concentrations might be insufficient to result in efficacious treatment of biofilm-forming P. aeruginosa chronic infection.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ratas , Animales , Antibacterianos , Pseudomonas aeruginosa , Infección Persistente , Ratas Wistar , Infecciones por Pseudomonas/tratamiento farmacológico , Pulmón , Biopelículas , Pruebas de Sensibilidad Microbiana
5.
Antimicrob Agents Chemother ; 67(7): e0038223, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37367389

RESUMEN

A population pharmacokinetic model was developed to describe alterations in ceftaroline brain disposition caused by meningitis in healthy and methicillin-resistant Staphylococcus aureus (MRSA)-infected rats. Blood and brain microdialysate samples were obtained after a single bolus dose of ceftaroline fosamil (20 mg/kg) administered intravenously. Plasma data were modeled as one compartment, and brain data were added to the model as a second compartment, with bidirectional drug transport between plasma and brain (Qin and Qout). The cardiac output (CO) of the animals showed a significant correlation with the relative recovery (RR) of plasma microdialysis probes, with animals with greater CO presenting lower RR values. The Qin was approximately 60% higher in infected animals, leading to greater brain exposure to ceftaroline. Ceftaroline brain penetration was influenced by MRSA infection, increasing from 17% (Qin/Qout) in healthy animals to 27% in infected animals. Simulations of a 2-h intravenous infusion of 50 mg/kg every 8 h achieved >90% probability of target attainment (PTA) in plasma and brain for the modal MRSA MIC (0.25 mg/L), suggesting that the drug should be considered an option for treating central nervous system infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratas , Animales , Antibacterianos/uso terapéutico , Ratas Wistar , Cefalosporinas/farmacocinética , Encéfalo , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Ceftarolina
6.
Heliyon ; 9(6): e16564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251463

RESUMEN

A bioanalytical LC-MS/MS method was developed and validated to determine ceftaroline in microdialysate samples from plasma and brain. Ceftaroline was separated using a C18 column and a mobile phase consisting of water and acetonitrile, both with 5 mM of ammonium formate and acid formic 0.1%, eluted as gradient. Ceftaroline was monitored using electrospray ionization operating on positive mode (ESI+) monitoring the transition 604.89 > 209.3 m/z. The method showed linearity in the concentration range of 0.5-500 ng/mL for brain microdialysate and 0.5-2500 ng/mL for plasma microdialysate with coefficients of determination ≥0.997. The inter-and intra-day precision, the accuracy, and the stability of the drug in different conditions were in accordance with the acceptable limits determined by international guidelines. Plasma pharmacokinetics and brain distribution of the drug were carried out after intravenous administration of 20 mg/kg of ceftaroline to male Wistar rats. The estimated geometric mean (geometric coefficient of variation) area under the curve (AUC0-∞) was 4.68 (45.8%) mg·h/L and 1.20 (54.2%) mg·h/L for plasma and brain, respectively, resulting in a brain exposure of about 33% (AUCfree brain/AUCfree plasma). The results indicate that ceftaroline presents good penetration in the brain when considering free plasma and free brain concentrations.

7.
Pharmaceutics ; 14(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745809

RESUMEN

Biofilms and infectious process may alter free antimicrobial concentrations at the site of infection. Tobramycin (TOB), an aminoglycoside used to treat lung infections caused by Pseudomonas aeruginosa, binds to alginate present in biofilm extracellular matrix increasing its minimum inhibitory concentration (MIC). This work aimed to investigate the impact of biofilm-forming P. aeruginosa infection on TOB lung and epithelial lining fluid (ELF) penetration, using microdialysis, and to develop a population pharmacokinetic (popPK) model to evaluate the probability of therapeutic target attainment of current dosing regimens employed in fibrocystic and non-fibrocystic patients. The popPK model developed has three compartments including the lung. The ELF concentrations were described by a penetration factor derived from the lung compartment. Infection was a covariate in lung volume (V3) and only chronic infection was a covariate in central volume (V1) and total clearance (CL). Simulations of the recommended treatments for acute and chronic infection achieved >90% probability of target attainment (PTA) in the lung with 4.5 mg/kg q24h and 11 mg/kg q24h, respectively, for the most prevalent P. aeruginosa MIC (0.5 mg/mL). The popPK model was successfully applied to evaluate the PTA of current TOB dosing regimens used in the clinic, indicating the need to investigate alternative posology.

8.
J Food Sci Technol ; 56(3): 1559-1566, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30956336

RESUMEN

Phenolic compounds of the first and second racking wine lees, including anthocyanins, were qualitatively and quantitatively analyzed by HPLC-DAD-MS. Wine lees from both rackings displayed similar chromatographic profiles. Therefore, it was impossible to differentiate the qualitative results regarding phenolic compounds. On the other hand, those from the second racking presented, on average, concentration of polyphenols twice as high. While the ones from the first racking displayed ca. 1600 mg phenolic compounds and 400 mg anthocyanins per kg of dry matter, those from the second racking have shown ca. 3300 mg phenolic compounds and 700 mg anthocyanins per kg of dry matter. These outcomes indicate that, although the wine lees from the first racking can be employed as a resource for phenolic compounds recovery, those from the second racking are more appropriate for this purpose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA