Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pain Res (Lausanne) ; 3: 1018800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387416

RESUMEN

Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.

2.
Rheum Dis Clin North Am ; 47(2): 245-264, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33781493

RESUMEN

Rheumatoid arthritis is one of most frequent rheumatic diseases, affecting around 1% of the population worldwide. Pain impacting the quality of life for the patient with rheumatoid arthritis, is often the primary factor leading them to seek medical care. Although sex-related differences in humans and animal models of rheumatoid arthritis are described, the correlation between pain and sex in rheumatoid arthritis has only recently been directly examined. Here we review the literature and explore the mechanisms underlying the expression of the pain phenotype in females and males in preclinical models of rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Dolor/etiología , Fenotipo , Calidad de Vida
3.
J Neurophysiol ; 120(5): 2649-2653, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30230992

RESUMEN

We investigated the relation between swimming exercise and fear memory extinction. Rats that performed regular swimming exercise over 6 wk underwent fear conditioning. Twenty-eight days later, they were submitted to extinction tests. Swimming rats had enhanced extinction process throughout the 5 days of the extinction test compared with sedentary rats. This suggests that the swimming exercise accelerated the process of aversive memory extinction, reducing the expression of conditioned fear behavior. These results encourage further studies addressing the anxiolytic effects of exercise, with potential implications for anxiety disorders such as posttraumatic stress disorder. NEW & NOTEWORTHY We have shown that rats that performed regular swimming exercise over 6 wk had enhanced extinction process compared with sedentary animals. The swimming exercise may accelerate the process of aversive memory extinction, reducing the expression of conditioned fear behavior.


Asunto(s)
Extinción Psicológica , Miedo , Memoria , Condicionamiento Físico Animal , Animales , Masculino , Ratas , Ratas Wistar , Natación
4.
Eur J Neurosci ; 2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885271

RESUMEN

Epidemiological studies have shown a close association between pain and depression. There is evidence showing this association as patients with depression show a high chronic pain prevalence and vice versa. Considering that social stress is critical for the development of depression in humans, we used a social defeat stress (SDS) model which induces depressive-like behavior in mice. In this model, mice are exposed to an aggressor mouse for ten days, suffering brief periods of agonistic contact and long periods of sensory contact. Some mice display social avoidance, a depressive-like behavior, and are considered susceptible, while some mice do not, and are considered resilient. Thus, we investigated the nociceptive behavior of mice submitted to SDS and the neuroplastic changes in dopaminergic mesolimbic system. Our results showed that the stressed mice (resilient and susceptible) presented a higher sensitivity to pain than the control mice in chemical and mechanical tests. We also verified that susceptible mice have higher Bdnf mRNA in the VTA compared to the resilient and control mice. The stressed mice had less mature BDNF and more truncated BDNF protein in the NAc compared with control mice. Although social stress may trigger the development of depression and hyperalgesia, these two conditions may manifest independently as social stress induced hyperalgesia even in mice that did not display depressive-like behavior. Also, increased Bdnf in the VTA seems to be associated with depressive-like behavior, whereas high levels of truncated BDNF and low mature BDNF appear to be associated with hyperalgesia induced by social defeat stress.

5.
Life Sci ; 205: 54-62, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29750992

RESUMEN

Peripheral diabetic neuropathy (DN) manifests in nearly 60% of diabetic patients, being pain its most debilitating symptom. Although electrophysiological and morphological aspects are well described, little is known about its development and progression, undermining effective therapies. Hyperglycemia and insulin signaling impairment are considered the triggering events of oxidative stress observed in the dying nerves, however there are still many gaps in the knowledge of intracellular plastic changes it generates. AIMS: In this study we aimed to evaluate the early transcriptome changes in DN when the first symptoms of the disease start to appear. MAIN METHODS: Next-Generation Sequencing of messenger RNA (RNA-Seq) of L4 and L5 dorsal root ganglia (DRG) four weeks post-diabetes induction in a rat model for type 1 diabetes. KEY FINDINGS: RNA sequencing found 66 transcripts differentially expressed between diabetic and control groups, related mainly to the following biological processes: inflammation, hyperalgesia/analgesia, cell growth and cell survival. Given their roles, the differentially expressed genes suggest an attempt to switch to a survival/regenerative program. SIGNIFICANCE: Our results show that changes in the transcriptome profile start to appear early in the course of DN and might be related to secure cell homeostasis. Hence, the present data may indicate how DRG cells are responding to hyperglycemia in its early stages and which mechanisms first fail to respond, further leading to cell damage and cell death. Early screening of cell alterations in DN might lead to more concrete targets for pharmaceutical interventions, which could more efficiently delay cell damage.


Asunto(s)
Neuropatías Diabéticas/genética , Ganglios Espinales/patología , Perfilación de la Expresión Génica , Regeneración Nerviosa/genética , Dolor/etiología , Dolor/genética , Animales , Glucemia/metabolismo , Proliferación Celular , Supervivencia Celular/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/complicaciones , Neuropatías Diabéticas/patología , Regulación de la Expresión Génica , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/patología , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Masculino , Umbral del Dolor , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Transcriptoma
6.
Eur J Pharmacol ; 798: 113-121, 2017 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-28131783

RESUMEN

Cannabinoid system is a potential target for pain control. Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons. This study investigates whether the anti-hyperalgesic effect of CB1 receptor activation involves P2X3 receptor in primary afferent neurons. Mechanical hyperalgesia was evaluated by electronic von Frey test. Cannabinoid effect was evaluated using anandamide or ACEA, a non-selective or a selective CB1 receptor agonists, respectively; AM251, a CB1 receptor antagonist, and antisense ODN for CB1 receptor. Calcium imaging assay was performed to evaluated α,ß-meATP-responsive cultured DRG neurons pretreated with ACEA. Anandamide or ACEA administered in peripheral tissue reduced the carrageenan-induced mechanical hyperalgesia. The reduction in the carrageenan-induced hyperalgesia induced by ACEA was completely reversed by administration of AM251 as well as by the intrathecal treatment with antisense ODN for CB1 receptor. Also, ACEA reduced the mechanical hyperalgesia induced by bradykinin and by α,ß-meATP, a P2X3 receptor non-selective agonist, but not by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß) and chemokine-induced chemoattractant-1 (CINC-1). Finally, CB1 receptors are co-localized with P2X3 receptors in DRG small-diameter neurons and the treatment with ACEA reduced the number of α,ß-meATP-responsive cultured DRG neurons. Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2X3 receptor in the primary afferent neurons.


Asunto(s)
Hiperalgesia/metabolismo , Hiperalgesia/patología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Bradiquinina/farmacología , Carragenina/farmacología , Tamaño de la Célula , Citocinas/metabolismo , Ganglios Espinales/patología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Neuronas Aferentes/patología , Oligodesoxirribonucleótidos Antisentido/genética , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/genética
7.
J Pain ; 18(2): 132-143, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27818192

RESUMEN

Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1ß, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade. PERSPECTIVE: P2X7 receptors could be promising therapeutic targets in the treatment of knee joint disease symptoms, especially in women, who are more affected than men by these conditions.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Sinovitis/complicaciones , Sinovitis/tratamiento farmacológico , Acetamidas/uso terapéutico , Animales , Carragenina/toxicidad , Relación Dosis-Respuesta a Droga , Estro/efectos de los fármacos , Femenino , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Hiperalgesia/etiología , Inflamación/etiología , Inyecciones Intraarticulares , Interleucina-6/metabolismo , Articulación de la Rodilla , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Peroxidasa/metabolismo , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Quinolinas/uso terapéutico , Ratas , Ratas Wistar , Sinovitis/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo
8.
Life Sci ; 166: 8-12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717845

RESUMEN

Prostaglandin E2 (PGE2) is one of the major signaling molecules involved in hyperalgesia, acting directly on nociceptors and resulting in the activation of PKA and PKC. Once active, these kinases phosphorylate many cellular proteins, resulting in changes on nociceptors sensorial transduction properties. The Janus Kinases (JAKs) are a family of intracellular signaling molecules generally associated with cytokine signaling, and their activity can be increased in nociceptors after peripheral inflammation. However, there are no evidences of JAKs direct involvement in PGE2 mediated sensitization of nociceptors. Therefore, the aim of the present study was to explore a possible role for JAKs in PGE2 mediated sensitization. In cultured dorsal root ganglion (DRG) neurons, we observed that the administration of PGE2 increases capsaicin induced calcium transients, and a pre-incubation of DRG cells with the JAK inhibitor AG490 blocks this PGE2 in vitro effect. Intrathecal administration of AG490 to ten-weeks-old male Wistar rats reduces the hyperalgesia induced by the intraplantar administration of PGE2 or carrageenan in the right hind paw. We also observed that carrageenan administration in the right hind paw induced an increase in membrane associated PKCepsilon in the ipsilateral L5 DRG, and this increase was blocked by intrathecal AG490 administration. In conclusion the present study indicates that the JAKs expressed in the DRG and spinal cord may have a role in the sensitization of nociceptors by a peripheral inflammatory event. Moreover, the inhibition of JAKs may be a possible novel pharmacological target for the control of the inflammatory hyperalgesia.


Asunto(s)
Dinoprostona/inmunología , Hiperalgesia/inmunología , Janus Quinasa 2/inmunología , Nociceptores/inmunología , Animales , Carragenina/inmunología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Ganglios Espinales/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Janus Quinasa 2/antagonistas & inhibidores , Masculino , Nociceptores/efectos de los fármacos , Nociceptores/patología , Ratas Wistar , Tirfostinos/farmacocinética , Tirfostinos/uso terapéutico
9.
Neurosci Lett ; 628: 147-52, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27329240

RESUMEN

Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced consolidation as well as persistence of conditioned fear memory. In addition, rats submitted to swimming exercise over six weeks showed an improved performance in the test of auditory-cued fear memory persistence, but not in the test of contextual fear memory persistence. Moreover, no significant effect from swimming exercise was observed on consolidation of both contextual and auditory fear memory. So, our study, revealing the effect of the swimming exercise on different stages of implicit memory of tone/foot shock conditioning, contributes to and complements the current knowledge about the environmental modulation of memory process.


Asunto(s)
Miedo/fisiología , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Natación , Estimulación Acústica , Animales , Condicionamiento Clásico , Electrochoque , Masculino , Ratas , Ratas Wistar
10.
Eur J Neurosci ; 42(7): 2380-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173870

RESUMEN

Dopaminergic neurotransmission in the nucleus accumbens, a central component of the mesolimbic system, has been associated with acute pain modulation. As there is a transition from acute to chronic pain ('chronification'), modulatory structures may be involved in chronic pain development. Thus, this study aimed to elucidate the role of nucleus accumbens dopaminergic neurotransmission in chronification of pain. We used a rat model in which daily subcutaneous injection of prostaglandin E2 in the hindpaw for 14 days induces a long-lasting state of nociceptor sensitization that lasts for at least 30 days following the end of the treatment. Our findings demonstrated that the increase of dopamine in the nucleus accumbens by local administration of GBR12909 (0.5 nmol/0.25 µL), a dopamine reuptake inhibitor, blocked prostaglandin E2 -induced acute hyperalgesia. This blockade was prevented by a dopamine D2 receptor antagonist (raclopride, 10 nmol/0.25 µL) but not changed by a D1 receptor antagonist (SCH23390, 0.5, 3 or 10 nmol/0.25 µL), both co-administered with GBR12909 in the nucleus accumbens. In contrast, the induction of persistent hyperalgesia was facilitated by continuous infusion of GBR12909 in the nucleus accumbens (0.021 nmol/0.5 µL/h) over 7 days of prostaglandin E2 treatment. The development of persistent hyperalgesia was impaired by SCH23390 (0.125 nmol/0.5 µL/h) and raclopride (0.416 nmol/0.5 µL/h), both administered continuously in the nucleus accumbens over 7 days. Taken together, our data suggest that the chronification of pain involves the plasticity of dopaminergic neurotransmission in the nucleus accumbens, which switches its modulatory role from antinociceptive to pronociceptive.


Asunto(s)
Dolor Crónico/metabolismo , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Hiperalgesia/metabolismo , Núcleo Accumbens/metabolismo , Animales , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Antagonistas de Dopamina/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Hiperalgesia/inducido químicamente , Masculino , Núcleo Accumbens/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/farmacología , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidores
11.
Eur J Pharmacol ; 741: 124-31, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25058903

RESUMEN

Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.


Asunto(s)
Analgésicos/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Dipirona/administración & dosificación , Neuronas/metabolismo , Canales de Potasio/metabolismo , Receptor Cannabinoide CB1/metabolismo , Analgésicos/metabolismo , Animales , Antiinflamatorios no Esteroideos/metabolismo , Inyecciones Espinales , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...