Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 64(12): 1965-1971, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37770109

RESUMEN

Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer. Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG). Results: In vitro and in vivo studies showed selective uptake of [123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [123I]CC1 did not cause significant toxicity to normal tissues. Conclusion: Taken together, these results show the potential of [123I]CC1 as a radioligand therapy for PARP-expressing cancers.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Radiofármacos/uso terapéutico , Electrones , Distribución Tisular , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral
2.
Nucl Med Biol ; 116-117: 108312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36621256

RESUMEN

INTRODUCTION: Radioligand therapy (RLT) is an expanding field that has shown great potential in the fight against cancer. Radionuclides that can be carried by selective ligands such as antibodies, peptides, and small molecules targeting cancerous cells have demonstrated a clear improvement in the move towards precision medicine. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage repair signalling pathway, with PARP inhibitors olaparib, talazoparib, niraparib, veliparib, and rucaparib having FDA approval for cancer therapy in routine clinical use. Based on our previous work with the radiolabelled PARP inhibitor [18F]rucaparib, we replaced the fluorine-18 moiety, used for PET imaging, with iodine-123, a radionuclide used for SPECT imaging and Auger electron therapy, resulting in 8-[123I]iodo-5-(4-((methylamino)methyl)phenyl)-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indol-1-one, ([123I]GD1), as a potential radiopharmaceutical for RLT. METHODS: [123I]GD1 was synthesized via copper-mediated radioiodination from a selected boronic esters precursor. In vitro uptake, retention, blocking, and effects on clonogenic survival with [123I]GD1 treatment were tested in a panel of cancer cell lines. Enzymatic inhibition of PARP by GD1 was also tested in a cell-free system. The biodistribution of [123I]GD1 was investigated by SPECT/CT in mice following intravenous administration. RESULTS: Cell-free enzymatic inhibition and in vitro blocking experiments confirmed a modest ability of GD1 to inhibit PARP-1, IC50 = 239 nM. In vitro uptake of [123I]GD1 in different cell lines was dose dependent, and radiolabelled compound was retained in cells for >2 h. Significantly reduced clonogenic survival was observed in vitro after exposure of cells for 1 h with as low as 50 kBq of [123I]GD1. The biodistribution of [123I]GD1 was further characterized in vivo showing both renal and hepatobiliary clearance pathways with a biphasic blood clearance. CONCLUSION: We present the development of a new theragnostic agent based on the rucaparib scaffold and its evaluation in in vitro and in vivo models. The data reported show that [123I]GD1 may have potential to be used as a theragnostic agent.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Ratones , Electrones , Radioisótopos de Yodo/uso terapéutico , Neoplasias/radioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Distribución Tisular , Indoles/química , Indoles/farmacología , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/efectos de la radiación
3.
EJNMMI Res ; 12(1): 67, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210377

RESUMEN

PURPOSE: Radiopharmaceuticals targeting poly(ADP-ribose) polymerase (PARP) have emerged as promising agents for cancer diagnosis and therapy. PARP enzymes are expressed in both cancerous and normal tissue. Hence, the injected mass, molar activity and potential pharmacological effects are important considerations for the use of radiolabelled PARP inhibitors for diagnostic and radionuclide therapeutic applications. Here, we performed a systematic evaluation by varying the molar activity of [18F]olaparib and the injected mass of [TotalF]olaparib to investigate the effects on tumour and normal tissue uptake in two subcutaneous human glioblastoma xenograft models. METHODS: [18F]Olaparib uptake was evaluated in the human glioblastoma models: in vitro on U251MG and U87MG cell lines, and in vivo on tumour xenograft-bearing mice, after administration of [TotalF]olaparib (varying injected mass: 0.04-8.0 µg, and molar activity: 1-320 GBq/µmol). RESULTS: Selective uptake of [18F]olaparib was demonstrated in both models. Tumour uptake was found to be dependent on the injected mass of [TotalF]olaparib (µg) but not the molar activity. An injected mass of 1 µg resulted in the highest tumour uptake (up to 6.9 ± 1.3%ID/g), independent of the molar activity. In comparison, both the lower and higher injected masses of [TotalF]olaparib resulted in lower relative tumour uptake (%ID/g; P < 0.05). Ex vivo analysis of U87MG xenograft sections showed that the heterogeneity in [18F]olaparib intratumoural uptake correlated with PARP1 expression. Substantial upregulation of PARP1-3 expression was observed after administration of [TotalF]olaparib (> 0.5 µg). CONCLUSION: Our findings show that the injected mass of [TotalF]olaparib has significant effects on tumour uptake. Moderate injected masses of PARP inhibitor-derived radiopharmaceuticals may lead to improved relative tumour uptake and tumour-to-background ratio for cancer diagnosis and radionuclide therapy.

4.
EJNMMI Res ; 12(1): 50, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962885

RESUMEN

PURPOSE: Ataxia telangiectasia mutated (ATM) is a key mediator of the DNA damage response, and several ATM inhibitors (ATMi) are currently undergoing early phase clinical trials for the treatment of cancer. A radiolabelled ATMi to determine drug pharmacokinetics could assist patient selection in a move towards more personalised medicine. The aim of this study was to synthesise and investigate the first 18F-labelled ATM inhibitor [18F]1 for non-invasive imaging of ATM protein and ATMi pharmacokinetics. METHODS: Radiofluorination of a confirmed selective ATM inhibitor (1) was achieved through substitution of a nitro-precursor with [18F]fluoride. Uptake of [18F]1 was assessed in vitro in H1299 lung cancer cells stably transfected with shRNA to reduce expression of ATM. Blocking studies using several non-radioactive ATM inhibitors assessed binding specificity to ATM. In vivo biodistribution studies were performed in wild-type and ATM-knockout C57BL/6 mice using PET/CT and ex vivo analysis. Uptake of [18F]1 in H1299 tumour xenografts was assessed in BALB/c nu/nu mice. RESULTS: Nitro-precursor 2 was synthesised with an overall yield of 12%. Radiofluorination of 2 achieved radiochemically pure [18F]1 in 80 ± 13 min with a radiochemical yield of 20 ± 13% (decay-corrected) and molar activities up to 79.5 GBq/µmol (n = 11). In vitro, cell-associated activity of [18F]1 increased over 1 h, and retention of [18F]1 dropped to 50% over 2 h. [18F]1 uptake did not correlate with ATM expression, but could be reduced significantly with an excess of known ATM inhibitors, demonstrating specific binding of [18F]1 to ATM. In vivo, fast hepatobiliary clearance was observed with tumour uptake ranging 0.13-0.90%ID/g after 1 h. CONCLUSION: Here, we report the first radiofluorination of an ATM inhibitor and its in vitro and in vivo biological evaluations, revealing the benefits but also some limitations of 18F-labelled ATM inhibitors.

5.
Eur J Nucl Med Mol Imaging ; 49(11): 3668-3678, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35614267

RESUMEN

PURPOSE: Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD: We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS: Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION: Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Animales , Humanos , Indoles , Ratones , Neoplasias Pancreáticas/diagnóstico por imagen , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
6.
J Nucl Med ; 62(11): 1537-1544, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33789931

RESUMEN

Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. Methods: We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N3-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N3-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with 111In. Cell uptake of 111In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using 111In-GFP-G1-TAT. Results: We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. 111In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression (P < 0.001). In vivo xenograft studies demonstrated that 111In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Conclusion: Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único , Proteínas Fluorescentes Verdes , Límite de Detección
7.
Mol Imaging Biol ; 22(5): 1226-1234, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342268

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibitors are extensively studied and used as anti-cancer drugs, as single agents or in combination with other therapies. Most radiotracers developed to date have been chosen on the basis of strong PARP1-3 affinity. Herein, we propose to study AZD2461, a PARP inhibitor with lower affinity towards PARP3, and to investigate its potential for PARP targeting in vivo. METHODS: Using the Cu-mediated 18F-fluorodeboronation of a carefully designed radiolabelling precursor, we accessed the 18F-labelled isotopologue of the PARP inhibitor AZD2461. Cell uptake of [18F]AZD2461 in vitro was assessed in a range of pancreatic cell lines (PSN-1, PANC-1, CFPAC-1 and AsPC-1) to assess PARP expression and in vivo in xenograft-bearing mice. Blocking experiments were performed with both olaparib and AZD2461. RESULTS: [18F]AZD2461 was efficiently radiolabelled via both manual and automated procedures (9 % ± 3 % and 3 % ± 1 % activity yields non-decay corrected). [18F]AZD2461 was taken up in vivo in PARP1-expressing tumours, and the highest uptake was observed for PSN-1 cells (7.34 ± 1.16 %ID/g). In vitro blocking experiments showed a lesser ability of olaparib to reduce [18F]AZD2461 binding, indicating a difference in selectivity between olaparib and AZD2461. CONCLUSION: Taken together, we show the importance of screening the PARP selectivity profile of radiolabelled PARP inhibitors for use as PET imaging agents.


Asunto(s)
Daño del ADN , Radioisótopos de Flúor/química , Ftalazinas/química , Piperidinas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tomografía de Emisión de Positrones , Animales , Boro/química , Línea Celular Tumoral , Cobre/química , Ésteres/química , Ratones Endogámicos BALB C , Ratones Desnudos , Ftalazinas/síntesis química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Piperidinas/síntesis química , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Nucl Med ; 61(7): 1006-1013, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31862800

RESUMEN

Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualization of high-grade pancreatic intraepithelial neoplasias (PanIN-3s), generally regarded as the noninvasive precursors of PDAC. The DNA damage response is known to be hyperactivated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent 111In-anti-γH2AX-TAT allows visualization of the DNA damage repair marker γH2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) mice were imaged with 18F-FDG and 111In-anti-γH2AX-TAT. The presence of PanIN/PDAC as visualized by histologic examination was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-γH2AX-TAT was evaluated. Results: In KPC mouse pancreata, γH2AX expression was increased in high-grade PanINs but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-γH2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas correlated positively with the age of KPC mice, which correlated with the number of high-grade PanINs. 111In-anti-γH2AX-TAT localizes preferentially in high-grade PanIN lesions but not in established PDAC. Younger, non-tumor-bearing KPC mice that show uptake of 111In-anti-γH2AX-TAT in the pancreas survive for a significantly shorter time than mice with physiologic 111In-anti-γH2AX-TAT uptake. Conclusion:111In-anti-γH2AX-TAT imaging allows noninvasive detection of DNA damage repair signaling upregulation in preinvasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer.


Asunto(s)
Daño del ADN , Detección Precoz del Cáncer , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Transducción de Señal , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Clasificación del Tumor , Neoplasias Pancreáticas/patología
9.
Tomography ; 5(2): 274-281, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31245549

RESUMEN

A magnetic resonance (MR)-, computed tomography (CT)-, single-photon emission computed tomography (SPECT)-, and positron emission tomography (PET)-compatible carbon-fiber sheet resistor for temperature maintenance in small animals where space limitations prevent the use of circulating fluids was developed. A 250 Ω carbon-fiber sheet resistor was mounted to the underside of an imaging cradle. Alternating current, operating at 99 kHz, and with a power of 1-2 W, was applied to the resistor providing a cradle base temperature of ∼37°C. Temperature control was implemented with a proportional-integral-derivative controller, and temperature maintenance was demonstrated in 4 mice positioned in both MR and PET/SPECT/CT scanners. MR and CT compatibility were also shown, and multimodal MR-CT-PET-SPECT imaging of the mouse abdomen was performed in vivo. Core temperature was maintained at 35.5°C ± 0.2°C. No line-shape, frequency, or image distortions attributable to the current flow through the heater were observed on MR. Upon CT imaging, no heater-related artifacts were observed when carbon-fiber was used. Multimodal imaging was performed and images could be easily coregistered, displayed, analyzed, and presented. Carbon fiber sheet resistors powered with high-frequency alternating current allow homeothermic maintenance that is compatible with multimodal imaging. The heater is small, and it is easy to produce and integrate into multimodal imaging cradles.


Asunto(s)
Temperatura Corporal/fisiología , Fibra de Carbono , Calefacción/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Femenino , Ratones , Ratones Endogámicos CBA , Modelos Animales , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos
10.
Nucl Med Biol ; 70: 14-22, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30825614

RESUMEN

While radiolabelled antibodies have found great utility as PET and SPECT imaging agents in oncological investigations, a notable shortcoming of these agents is their propensity to accumulate non-specifically within tumour tissue. The degree of this non-specific contribution to overall tumour uptake is highly variable and can ultimately lead to false conclusions. Therefore, in an effort to obtain a reliable measure of inter-individual differences in non-specific tumour uptake of radiolabelled antibodies, we demonstrate that the use of dual-isotope imaging overcomes this issue, enables true quantification of epitope expression levels, and allows non-invasive in vivo immunohistochemistry. The approach involves co-administration of (i) an antigen-targeting antibody labelled with zirconium-89 (89Zr), and (ii) an isotype-matched non-specific control IgG antibody labelled with indium-111 (111In). As an example, the anti-HER2 antibody trastuzumab was radiolabelled with 89Zr, and co-administered intravenously together with its 111In-labelled non-specific counterpart to mice bearing human breast cancer xenografts with differing HER2 expression levels (MDA-MB-468 [HER2-negative], MDA-MB-231 [low-HER2], MDA-MB-231/H2N [medium-HER2], and SKBR3 [high-HER2]). Simultaneous PET/SPECT imaging using a MILabs Vector4 small animal scanner revealed stark differences in the intratumoural distribution of [89Zr]Zr-trastuzumab and [111In]In-IgG, highlighting regions of HER2-mediated uptake and non-specific uptake, respectively. Normalisation of the tumour uptake values and tumour-to-blood ratios obtained with [89Zr]Zr-trastuzumab against those obtained with [111In]In-IgG yielded values which were most strongly correlated (R = 0.94; P = 0.02) with HER2 expression levels for each breast cancer type determined by Western blot and in vitro saturation binding assays, but not non-normalised uptake values. Normalised intratumoural distribution of [89Zr]Zr-trastuzumab correlated well with intratumoural heterogeneity HER2 expression.


Asunto(s)
Inmunoconjugados/química , Radioisótopos de Indio , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Circonio , Animales , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacocinética , Inmunohistoquímica , Marcaje Isotópico , Ratones , Receptor ErbB-2/metabolismo , Distribución Tisular
11.
Nucl Med Biol ; 58: 1-7, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29291493

RESUMEN

INTRODUCTION: Zirconium-89 (89Zr, t1/2=78.4h) liquid target (LT) production offers an approach to introduce this positron-emitting isotope to cyclotron centres without the need for a separate solid target (ST) production set up. We compared the production, purification, and antibody radiolabeling yields of 89Zr-(LT) and 89Zr-(ST), and assessed the feasibility of 89Zr-(LT) for preclinical PET/CT. METHODS: 89Zr-(ST) production was performed with an 89Y foil on a TR 19 cyclotron at 13.8MeV. For LT production; an aqueous solution of yttrium nitrate (Y(NO3)3·6H2O) was irradiated on a TR 13 cyclotron at 12MeV. 89Zr was purified from the ST or LT material with hydroxamate resin, and used to radiolabel p-SCN-Bn-Deferoxamine (DFO)-conjugated Trastuzumab. MicroPET-CT imaging was performed at 1, 3 and 5days post-injection of 89Zr-DFO-Trastuzumab from ST or LT with biodistribution analysis on day 5. RESULTS: Irradiation of the ST yielded 2.88±1.07GBq/µA with a beam current of 14.0±3.8µA and irradiation time of 137±48min at end of bombardment while LT yielded 0.27±0.05GBq/µA with a beam current of 9.9±2.2µA and irradiation time of 221±29min. Radiolabeling of DFO-Trastuzumab with 89Zr-(ST) or 89Zr-(LT) was successful with purity>97% and specific activity>0.12MBq/µg (of antibody). MicroPET-CT imaging and biodistribution profiles showed similar uptake of 89Zr-(ST)-DFO-Trastuzumab and 89Zr-(LT)-DFO-Trastuzumab in tumor and all organs of interest. CONCLUSION: 89Zr-(LT) was effectively used to prepare antibody bioconjugates with specific activities suitable for small animal imaging. PET imaging and biodistribution revealed similar behaviours between bioconjugates labeled with 89Zr produced from the two target systems. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: These results have important implications for the production of PET isotopes such as 89Zr to cyclotron facilities with only LT capabilities - such as most clinical centres - expanding the availability of 89Zr-immunoPET.


Asunto(s)
Deferoxamina/química , Marcaje Isotópico/métodos , Radioisótopos/química , Trastuzumab/química , Circonio/química , Animales , Deferoxamina/farmacocinética , Femenino , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular , Trastuzumab/farmacocinética
12.
Bioconjug Chem ; 28(8): 2145-2159, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28683198

RESUMEN

Potentially nonadentate (N5O4) bifunctional chelator p-SCN-Bn-H4neunpa and its immunoconjugate H4neunpa-trastuzumab for 111In radiolabeling are synthesized. The ability of p-SCN-Bn-H4neunpa and H4neunpa-trastuzumab to quantitatively radiolabel 111InCl3 at an ambient temperature within 15 or 30 min, respectively, is presented. Thermodynamic stability determination with In3+, Bi3+, and La3+ resulted in high conditional stability constant (pM) values. In vitro human serum stability assays have demonstrated both 111In complexes to have high stability over 5 days. Mouse biodistribution of [111In][In(p-NO2-Bn-neunpa)]-, compared to that of [111In][In(p-NH2-Bn-CHX-A″-diethylenetriamine pentaacetic acid (DTPA))]2-, at 1, 4, and 24 h shows fast clearance of both complexes from the mice within 24 h. In a second mouse biodistribution study, the immunoconjugates 111In-neunpa-trastuzumab and 111In-CHX-A″-DTPA-trastuzumab demonstrate a similar distribution profile but with slightly lower tumor uptake of 111In-neunpa-trastuzumab compared to that of 111In-CHX-A″-DTPA-trastuzumab. These results were also confirmed by immuno-single photon emission computed tomography (immuno-SPECT) imaging in vivo. These initial investigations reveal the acyclic bifunctional chelator p-SCN-Bn-H4neunpa to be a promising chelator for 111In (and other radiometals) with high in vitro stability and also show H4neunpa-trastuzumab to be an excellent 111In chelator with promising biodistribution in mice.


Asunto(s)
Quelantes/química , Inmunoconjugados/química , Radioisótopos de Indio , Compuestos Organometálicos/química , Radiofármacos/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Trastuzumab/química , Animales , Línea Celular Tumoral , Quelantes/síntesis química , Estabilidad de Medicamentos , Femenino , Humanos , Inmunoconjugados/farmacocinética , Ratones , Compuestos Organometálicos/síntesis química , Ácido Pentético/química , Radiofármacos/farmacocinética , Distribución Tisular
13.
Bioorg Med Chem Lett ; 27(4): 708-712, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131709

RESUMEN

Two compact and symmetrical bifunctional tetrahydroxamate chelators, 1 and 2, were synthesized and evaluated for labeling antibodies with 89Zr for imaging with positron emission tomography. Using 2,2'-iminodiacetamide as the backbone, four hydroxamate-containing moieties coupled to the diacetamide nitrogen were used for 89Zr labeling, while a pendant connected to the amino group provided an isothiocyanate group for coupling to the antibody. Both 1- and 2-conjugated Trastuzumab were labeled with 89Zr efficiently (>90% radiolabeling yield), and their 89Zr-labeled products maintained comparable immunoreactivity to Trastuzumab. Compared to 89Zr-labeled deferoxamine-conjugated Trastuzumab, 89Zr-1- and 89Zr-2-Trastuzumab showed faster demetalation in mouse plasma, and also displayed higher bone uptake in mice. Despite suboptimal stability of 89Zr complexes of 1 and 2, our design strategy led to tetrahydroxamate chelators for efficient 89Zr labeling, and could be potentially modified to provide novel chelators with improved stability.


Asunto(s)
Anticuerpos Monoclonales/química , Quelantes/química , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Ácidos Hidroxámicos/química , Radiofármacos/síntesis química , Circonio/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Huesos/diagnóstico por imagen , Huesos/metabolismo , Medios de Contraste/química , Medios de Contraste/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Deferoxamina/química , Diseño de Fármacos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/metabolismo , Marcaje Isotópico , Ratones , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/metabolismo , Distribución Tisular , Trastuzumab/química , Trastuzumab/inmunología , Trastuzumab/metabolismo
14.
Angew Chem Int Ed Engl ; 53(44): 11876-80, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25196467

RESUMEN

A new zwitterionic organotrifluoroborate is appended to three radiosynthons that afford undergo facile bioconjugation to several clinically relevant peptides and one enzyme inhibitor. Molecularly complex bioconjugates are (18)F-labeled in a single aqueous step in rapid time (<15 min) without HPLC purification to afford tracers in good yields (>200 mCi, 20-40%) at high specific activity (≥3 Ci/µmol) and at >98% purity. PET imaging shows in vivo stability and tumor uptake.


Asunto(s)
Radioisótopos de Flúor/química , Fluorodesoxiglucosa F18/química , Marcaje Isotópico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...