Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 10: 1236136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711439

RESUMEN

Introduction: Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results: Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion: In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.

2.
Sci Rep ; 13(1): 4837, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964198

RESUMEN

Antibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs. Most rabbit light chains have an extra disulfide bridge, that links the variable and constant domains, between Cys80 and Cys171, which is not found in the human or mouse. Thus, to develop a new generation of ADCs, we explored the potential of rabbit-derived VL-single-domain antibody scaffolds (sdAbs) to selectively conjugate a payload to Cys80. Hence, a rabbit sdAb library directed towards canine non-Hodgkin lymphoma (cNHL) was subjected to in vitro and in vivo phage display. This allowed the identification of several highly specific VL-sdAbs, including C5, which specifically target cNHL cells in vitro and present promising in vivo tumor uptake. C5 was selected for SN-38 site-selective payload conjugation through its exposed free Cys80 to generate a stable and homogenous C5-DAB-SN-38. C5-DAB-SN-38 exhibited potent cytotoxicity activity against cNHL cells while inhibiting DNA-TopoI activity. Overall, our strategy validates a platform to develop a novel class of ADCs that combines the benefits of rabbit VL-sdAb scaffolds and the canine lymphoma model as a powerful framework for clinically translation of novel therapeutics for cancer.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Animales , Perros , Conejos , Ratones , Humanos , Inmunoconjugados/farmacología , Anticuerpos Monoclonales/farmacología , Irinotecán , Neoplasias/terapia , Antígenos , Antineoplásicos/farmacología
3.
Front Microbiol ; 13: 962124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225354

RESUMEN

The discovery of hybridoma technology, described by Kohler and Milstein in 1975, and the resulting ability to generate monoclonal antibodies (mAbs) initiated a new era in antibody research and clinical development. However, limitations of the hybridoma technology as a routine antibody generation method in conjunction with high immunogenicity responses have led to the development of alternative approaches for the streamlined identification of most effective antibodies. Within this context, display selection technologies such as phage display, ribosome display, yeast display, bacterial display, and mammalian cell surface display have been widely promoted over the past three decades as ideal alternatives to traditional hybridoma methods. The display of antibodies on phages is probably the most widespread and powerful of these methods and, since its invention in late 1980s, significant technological advancements in the design, construction, and selection of antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. With evolving novel disease targets and the emerging of a new generation of therapeutic antibodies, such as bispecific antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapies, it is clear that phage display is expected to continue to play a central role in antibody development. Nevertheless, for non-standard and more demanding cases aiming to generate best-in-class therapeutic antibodies against challenging targets and unmet medical needs, in vivo phage display selections by which phage libraries are directly injected into animals or humans for isolating and identifying the phages bound to specific tissues offer an advantage over conventional in vitro phage display screening procedures. Thus, in the present review, we will first summarize a general overview of the antibody therapeutic market, the different types of antibody fragments, and novel engineered variants that have already been explored. Then, we will discuss the state-of-the-art of in vivo phage display methodologies as a promising emerging selection strategy for improvement antibody targeting and drug delivery properties.

4.
Sci Rep ; 12(1): 2678, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177658

RESUMEN

Anti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies. However, research has been limited by the scarcity of preclinical models that recapitulate the complex interaction between the immune system and cancers. The addition of the canine lymphoma (cNHL) model in the development of anti-CD20 therapies may provide a clinically relevant approach for the translation of improved immunotherapies. Still, an anti-CD20 therapy for cNHL has not been established stressing the need of a comprehensive target characterization. Herein, we performed an in-depth characterization on canine CD20 mRNA transcript and protein expression in a cNHL biobank and demonstrated a canine CD20 overexpression in B-cell lymphoma samples. Moreover, CD20 gene sequencing analysis identified six amino acid differences in patient samples (C77Y, L147F, I159M, L198V, A201T and G273E). Finally, we reported the use of a novel strategy for the generation of anti-CD20 mAbs, with human and canine cross-reactivity, by exploring our rabbit derived single-domain antibody platform. Overall, these results support the rationale of using CD20 as a target for veterinary settings and the development of novel therapeutics and immunodiagnostics.


Asunto(s)
Antígenos CD20/inmunología , Antígenos de Neoplasias/inmunología , Enfermedades de los Perros , Inmunización Pasiva , Linfoma de Células B , Animales , Línea Celular Tumoral , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/terapia , Perros , Células HEK293 , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Linfoma de Células B/veterinaria
5.
Angew Chem Int Ed Engl ; 60(49): 25914-25921, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741376

RESUMEN

Antibody-drug conjugates (ADCs) are a new class of therapeutics that combine the lethality of potent cytotoxic drugs with the targeting ability of antibodies to selectively deliver drugs to cancer cells. In this study we show for the first time the synthesis of a reactive-oxygen-species (ROS)-responsive ADC (VL-DAB31-SN-38) that is highly selective and cytotoxic to B-cell lymphoma (CLBL-1 cell line, IC50 value of 54.1 nM). The synthesis of this ADC was possible due to the discovery that diazaborines (DABs) are a very effective ROS-responsive unit that are also very stable in buffer and in plasma. DFT calculations performed on this system revealed a favorable energetic profile (ΔGR=-74.3 kcal mol-1 ) similar to the oxidation mechanism of aromatic boronic acids. DABs' very fast formation rate and modularity enabled the construction of different ROS-responsive linkers featuring self-immolative modules, bioorthogonal functions, and bioconjugation handles. These structures were used in the site-selective functionalization of a VL antibody domain and in the construction of the homogeneous ADC.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Inmunoconjugados/farmacología , Linfoma de Células B/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Compuestos de Boro/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Estructura Molecular
6.
Pharmaceutics ; 13(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34683891

RESUMEN

A major bottleneck in the successful development of central nervous system (CNS) drugs is the discovery and design of molecules that can cross the blood-brain barrier (BBB). Nano-delivery strategies are a promising approach that take advantage of natural portals of entry into the brain such as monoclonal antibodies (mAbs) targeting endogenous BBB receptors. However, the main selected mAbs rely on targeting broadly expressed receptors, such as the transferrin and insulin receptors, and in selection processes that do not fully mimic the native receptor conformation, leading to mistargeting and a low fraction of the administered dose effectively reaching the brain. Thus, there is an urgent need to identify new BBB receptors and explore novel antibody selection approaches that can allow a more selective delivery into the brain. Considering that in vitro models fail to completely mimic brain structure complexity, we explored an in vivo cell immunization approach to construct a rabbit derived single-domain antibody (sdAb) library towards BBB endothelial cell receptors. The sdAb antibody library was used in an in vivo phage display screening as a functional selection of novel BBB targeting antibodies. Following three rounds of selections, next generation sequencing analysis, in vitro brain endothelial barrier (BEB) model screenings and in vivo biodistribution studies, five potential sdAbs were identified, three of which reaching >0.6% ID/g in the brain. To validate the brain drug delivery proof-of-concept, the most promising sdAb, namely RG3, was conjugated at the surface of liposomes encapsulated with a model drug, the pan-histone deacetylase inhibitor panobinostat (PAN). The translocation efficiency and activity of the conjugate liposome was determined in a dual functional in vitro BEB-glioblastoma model. The RG3 conjugated PAN liposomes enabled an efficient BEB translocation and presented a potent antitumoral activity against LN229 glioblastoma cells without influencing BEB integrity. In conclusion, our in vivo screening approach allowed the selection of highly specific nano-antibody scaffolds with promising properties for brain targeting and drug delivery.

7.
Front Vet Sci ; 8: 621758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513964

RESUMEN

The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.

8.
Molecules ; 26(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918529

RESUMEN

Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug's encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.


Asunto(s)
Antibacterianos/administración & dosificación , Sistemas de Liberación de Medicamentos , Farmacorresistencia Bacteriana , Nanotecnología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana/efectos de los fármacos , Liposomas
9.
Vet Immunol Immunopathol ; 218: 109940, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31561022

RESUMEN

Non-Hodgkin Lymphoma (NHL) is among the most common neoplasias in dogs and humans. Owing to remarkable similarities with its human counterpart, the canine lymphoma (cNHL) model has been proposed as a powerful framework for rapid and clinically relevant translation of novel immunotherapies. However, the establishment of cNHL as a predictive preclinical model has been hampered by the limited characterization of the canine immune system. Cytokines are key players of the interaction between tumor and its microenvironment. In human NHL, multiple cytokines have been linked to the development of lymphoma and are relevant biomarkers for treatment response and prognosis. In contrast, few studies have investigated cytokines in cNHL. Within this context, this study aimed to investigate cytokine regulation in cNHL. A multicentric cNHL biobank was successfully constructed. Cytokine mRNA profiles in tumor tissue and circulating PBMC were analyzed by qRT-PCR and compared to a healthy control group. Specific primers were used to evaluate Th1, Th2 and Th17 responses. Systemic cytokine concentrations were measured using a commercial canine multiplex assay which included IL-2, IL6, IL-10 and TNF-α, and compared to a healthy control group. Our results demonstrated a dysregulation of cytokine mRNA expression, representative of the tumor microenvironment and systemic response in cNHL. Intratumoral cytokine response revealed a significant downregulation of humoral and Th1 responses. The systemic response demonstrated a distinct mRNA pattern, however immunosuppression also prevailed. Cytokine serum quantification showed a significant increase of IL-10 concentration in cNHL. Significant differences in hematological parameters were described and a correlation between IL-6 protein serum levels and neutrophil count was shown. Finally, data analysis demonstrated that baseline pretreatment IFN-γ tissue mRNA levels were correlated to survival outcome, predicting a favorable response to chemotherapy. Altogether, these results revealed that cNHL presents a local and systemic dysregulation in cytokine response. By confirming and extending previous research, our work contributed for the evaluation of potential cytokine candidates for diagnostic, prognostic purposes and therapeutic intervention, therefore adding value to comparative oncology.


Asunto(s)
Citocinas/inmunología , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/veterinaria , Microambiente Tumoral/inmunología , Animales , Citocinas/sangre , Perros , Femenino , Tolerancia Inmunológica , Leucocitos Mononucleares/inmunología , Masculino , ARN Mensajero , Bancos de Tejidos
10.
PLoS One ; 13(12): e0208147, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30592723

RESUMEN

Canine diffuse large B-cell lymphoma (DLBCL) is one of the most common cancers in dogs which shares remarkable similarities with its human counterpart, making the dog an excellent model for the investigation of novel therapeutic agents. However, the integration of canine lymphoma in comparative studies has been limited due in part to the lack of suitable xenograft mouse models for preclinical studies. To overcome these limitations, we established and characterized a localized subcutaneous bioluminescent canine DLBCL xenograft mouse model. The canine CLBL-1 cell line stably expressing the luciferase and green fluorescent protein reporters was generated and used to establish the xenograft tumor model. A pilot study was first conducted with three different cell densities (0.1×10(6), 0.5×10(6) and 1×10(6) cells) in SCID mice. All mice presented homogeneous tumor induction within eight days after subcutaneous injection, with a 100% engraftment efficiency and no significant differences were observed among groups. The tumors were highly aggressive and localized at the site of inoculation and reproduced histological features and immunophenotype consistent with canine DLBCL. Importantly, xenograft tumors were detected and quantified by bioluminescent imaging. To assess response to therapy, a therapeutic study with a histone deacetylase inhibitor, panobinostat, was performed. The results demonstrated that panobinostat (20 mg/kg) efficiently inhibited tumor growth and that bioluminescent imaging allowed the monitorization and quantification of tumor response to therapy. In summary, this study provides a bioluminescence canine DLBCL model that offers high engraftment efficiency, preservation of tumor features, and noninvasive monitoring of tumor progression, validating the model as a promising preclinical tool for both veterinary and human medicine.


Asunto(s)
Microscopía Intravital/métodos , Mediciones Luminiscentes/métodos , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/veterinaria , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Benzotiazoles/administración & dosificación , Línea Celular Tumoral , Progresión de la Enfermedad , Enfermedades de los Perros/patología , Perros , Femenino , Genes Reporteros/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Microscopía Intravital/instrumentación , Lentivirus/genética , Luciferasas/genética , Mediciones Luminiscentes/instrumentación , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones SCID , Proyectos Piloto , Transducción Genética
11.
Oncotarget ; 9(47): 28586-28598, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983882

RESUMEN

Non-Hodgkin lymphoma (NHL) is one of the most common causes of cancer-related death in the United States and Europe. Although the outcome of NHL patients has improved over the last years with current therapies, the rate of mortality is still high. A plethora of new drugs is entering clinical development for NHL treatment; however, the approval of new treatments remains low due in part to the paucity of clinically relevant models for validation. Canine lymphoma shares remarkable similarities with its human counterpart, making the dog an excellent animal model to explore novel therapeutic molecules and approaches. Histone deacetylase inhibitors (HDACis) have emerged as a powerful new class of anti-cancer drugs for human therapy. To investigate HDACi antitumor properties on canine diffuse large B-cell lymphoma, a panel of seven HDACi compounds (CI-994, panobinostat, SBHA, SAHA, scriptaid, trichostatin A and tubacin) was screened on CLBL-1 canine B-cell lymphoma cell line. Our results demonstrated that all HDACis tested exhibited dose-dependent inhibitory effects on proliferation of CLBL-1 cells, while promoting increased H3 histone acetylation. Amongst all HDACis studied, panobinostat proved to be the most promising compound and was selected for further in vitro and in vivo evaluation. Panobinostat cytotoxicity was linked to H3 histone and α-tubulin acetylation, and to apoptosis induction. Importantly, panobinostat efficiently inhibited CLBL-1 xenograft tumor growth, and strongly induced acetylation of H3 histone and apoptosis in vivo. In conclusion, these results provide new data validating HDACis and, especially, panobinostat as a novel anti-cancer therapy for veterinary applications, while contributing to comparative oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...