Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 28: 203-205, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026464

RESUMEN

OBJECTIVES: The aim of this study was to investigate the genetic context of expanded-spectrum ß-lactam resistance in a Klebsiella pneumoniae strain causing a hard-to-treat nasal infection in a domestic cat. METHODS: A K. pneumoniae isolate was recovered from a 4-year-old male cat hospitalised in a veterinary hospital in Paraíba, Northeastern Brazil. Following phenotypic confirmation of multidrug resistance by the disk diffusion method, the genome was sequenced using an Illumina MiSeq system. Multilocus sequence typing (MLST) and structural features related to antimicrobial resistance were determined by downstream bioinformatics analyses. RESULTS: The strain was confirmed as sequence type 273 (ST273) K. pneumoniae harbouring a variety of genes conferring antimicrobial resistance to phenicols tetracyclines, aminoglycosides, ß-lactams, fosfomycin, sulfonamides and quinolones. Two plasmids were identified. Plasmid p114PB_I co-harboured a set of plasmid-borne resistance genes [blaCTX-M-15, blaTEM-1, qnrS1, tetD, tetR, sul2, aph(6)-Id, aph(3'') and cat2]. Notably, the multiresistance region was characterised as a chimeric plasmid structure sharing high sequence homology with several plasmids from Enterobacteriaceae. The second plasmid (p114PB_II) was characterised as a plasmid present in many genomes belonging to K. pneumoniae. CONCLUSION: The genetic context of the plasmid sequences harboured by a veterinary pathogenic K. pneumoniae isolate reveals the high complexity of horizontal gene transfer mechanisms in the acquisition of antimicrobial resistance genes. The emergence, dissemination and evolution of antimicrobial resistance must be investigated from a One Health perspective.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Gatos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/veterinaria , Masculino , Tipificación de Secuencias Multilocus , beta-Lactamasas/genética
2.
PLoS Comput Biol ; 17(3): e1008797, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788829

RESUMEN

Genome annotation conceptually consists of inferring and assigning biological information to gene products. Over the years, numerous pipelines and computational tools have been developed aiming to automate this task and assist researchers in gaining knowledge about target genes of study. However, even with these technological advances, manual annotation or manual curation is necessary, where the information attributed to the gene products is verified and enriched. Despite being called the gold standard process for depositing data in a biological database, the task of manual curation requires significant time and effort from researchers who sometimes have to parse through numerous products in various public databases. To assist with this problem, we present CODON, a tool for manual curation of genomic data, capable of performing the prediction and annotation process. This software makes use of a finite state machine in the prediction process and automatically annotates products based on information obtained from the Uniprot database. CODON is equipped with a simple and intuitive graphic interface that assists on manual curation, enabling the user to decide about the analysis based on information as to identity, length of the alignment, and name of the organism in which the product obtained a match. Further, visual analysis of all matches found in the database is possible, impacting significantly in the curation task considering that the user has at his disposal all the information available for a given product. An analysis performed on eleven organisms was used to test the efficiency of this tool by comparing the results of prediction and annotation through CODON to ones from the NCBI and RAST platforms.


Asunto(s)
Bacterias/genética , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Bases de Datos Genéticas , Interfaz Usuario-Computador
3.
Transbound Emerg Dis ; 68(3): 1019-1025, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32762020

RESUMEN

Staphylococcus aureus is a versatile and highly adaptable pathogen associated with a wide range of infectious diseases in humans and animals. In the last decades, concern has increased worldwide due to the emergence and spread of methicillin-resistant S. aureus (MRSA) strains shortly after this drug became a therapeutic option. In this study, we report the genomic features of the first mecC-mediated, ß-lactam resistant MRSA strain associated with livestock in Brazil and in the American continent. Three clonally related phenotypic MRSA isolates originated from a dairy herd were confirmed by polymerase chain reaction as mecC-harbouring MRSA isolates. Whole-genome sequencing was performed by Illumina Miseq platform. Downstream analyses showed that the strain was identified as the sequence type 126 (ST126) and spa type t605. In silico analysis revealed a mecC homolog gene in the orfX region associated with different penicillin-binding proteins. Moreover, genes encoding for efflux pump systems (arlR, mepR, LmrS, norA and mgrA), and antibiotic inactivation enzymes (blaZ and FosB) were also detected. Virulence analyses revealed that the strain harbours genes encoding for exoenzymes (aur, splA, splB and splE), toxin (hlgA, hlgB, hlgC, lukD and lukE) and enterotoxin (sea). The epidemiologic and genomic information provided by this study will support further epidemiological and evolutionary investigations to understand the origin and dissemination of mecC-MRSA among animals and its impact on public health.


Asunto(s)
Enfermedades de los Bovinos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas/veterinaria , Animales , Brasil/epidemiología , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Femenino , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/epidemiología , Virulencia/genética
4.
PLoS One ; 13(6): e0198965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29940001

RESUMEN

Exiguobacterium antarcticum strain B7 is a psychrophilic Gram-positive bacterium that possesses enzymes that can be used for several biotechnological applications. However, many proteins from its genome are considered hypothetical proteins (HPs). These functionally unknown proteins may indicate important functions regarding the biological role of this bacterium, and the use of bioinformatics tools can assist in the biological understanding of this organism through functional annotation analysis. Thus, our study aimed to assign functions to proteins previously described as HPs, present in the genome of E. antarcticum B7. We used an extensive in silico workflow combining several bioinformatics tools for function annotation, sub-cellular localization and physicochemical characterization, three-dimensional structure determination, and protein-protein interactions. This genome contains 2772 genes, of which 765 CDS were annotated as HPs. The amino acid sequences of all HPs were submitted to our workflow and we successfully attributed function to 132 HPs. We identified 11 proteins that play important roles in the mechanisms of adaptation to adverse environments, such as flagellar biosynthesis, biofilm formation, carotenoids biosynthesis, and others. In addition, three predicted HPs are possibly related to arsenic tolerance. Through an in vitro assay, we verified that E. antarcticum B7 can grow at high concentrations of this metal. The approach used was important to precisely assign function to proteins from diverse classes and to infer relationships with proteins with functions already described in the literature. This approach aims to produce a better understanding of the mechanism by which this bacterium adapts to extreme environments and to the finding of targets with biotechnological interest.


Asunto(s)
Adaptación Fisiológica , Arsénico/toxicidad , Bacillaceae/fisiología , Proteínas Bacterianas/fisiología , Anotación de Secuencia Molecular , Proteínas Bacterianas/genética , Biotecnología/métodos , Biología Computacional , Ambientes Extremos , Genes Bacterianos/genética , Análisis de Secuencia de ADN
5.
Genome Announc ; 3(1)2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25573928

RESUMEN

Vibrio fluvialis is a halophilic bacterium found in many environments and is mainly associated with sporadic cases and outbreaks of gastroenteritis in humans. Here, we describe the genome sequences of environmental strains of V. fluvialis 560 (Vf560) and V. fluvialis 539 (Vf539) possessing a variant of the integrative and conjugative element (ICE) SXT for the first time in Brazil and South America.

6.
Genome Announc ; 2(6)2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25377699

RESUMEN

Vibrio cholerae O1 is the causative agent of cholera and is ubiquitous in the aquatic environment, while V. cholerae strains non-O1 and non-O139 are recognized as causative agents of sporadic and localized outbreaks of diarrhea. Here, we report the complete sequence of a non-O1 and non-O139 V. cholerae strain (VCC19), which was isolated from the environment in Brazil. The sequence includes the integrative conjugative element (ICE). This paper is the first report of the presence of such an element in a V. cholerae strain isolated in Brazil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...