Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1259197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022684

RESUMEN

Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.


Asunto(s)
Artritis , Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Anticuerpos Antivirales , Artritis/etiología , Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/genética , Cefalea , Vacunación/efectos adversos , Vacunación/métodos , Ensayos Clínicos Fase I como Asunto
2.
Cells ; 11(16)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010567

RESUMEN

KRAS mutations have been shown to extend their oncogenic effects beyond the cancer cell, influencing the tumor microenvironment. Herein, we studied the impact of mutant KRAS on the modulation of the pro-tumorigenic properties of cancer-associated fibroblasts (CAFs), including α-SMA expression, TGFß1 and HGF production, extracellular matrix components and metalloproteinases expression as well as collagen contraction and migration capacities. To do so, CCD-18Co normal-like colon fibroblasts were challenged with conditioned media from control and KRAS silenced colorectal cancer (CRC) cells. Our results showed that the mutant KRAS CRC cell-secreted factors were capable of turning normal-like fibroblasts into CAF-like by modulating the α-SMA expression, TGFß1 and HGF production and migration capacity. Oncogenic KRAS played a secondary role as its silencing did not completely impair the capacity of CRC cells to modulate most of the fibroblast properties analyzed. In summary, our work suggests that mutant KRAS does not play a major role in controlling the CRC cell-secreted factors that modulate the behavior of fibroblasts. The fact that CRC cells retain the capacity to modulate the pro-tumorigenic features of fibroblasts independently of KRAS silencing is likely to negatively impact their response to KRAS inhibitors, thus standing as a putative mechanism of resistance to KRAS inhibition with potential therapeutical relevance.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/patología , Neoplasias Colorrectales/patología , Fibroblastos/metabolismo , Humanos , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
3.
Int J Cancer ; 151(10): 1810-1823, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35869872

RESUMEN

Genetic alterations influence the malignant potential of cancer cells, and so does the tumor microenvironment. Herein, we combined the study of KRAS oncogenic effects in colorectal cancer cells with the influence of fibroblast-derived factors. Results revealed that mutant KRAS regulates cell fate through both autonomous and nonautonomous signaling mechanisms. Specifically, processes such as proliferation and cell-cell aggregation were autonomously controlled by mutant KRAS independently of the stimulation with fibroblasts conditioned media. However, cancer cell invasion revealed to be a KRAS-dependent nonautonomous effect, resulting from the cooperation between fibroblast-derived HGF and mutant KRAS regulation of C-MET expression. C-MET downregulation upon KRAS silencing rendered cells less responsive to HGF and thus less invasive. Yet, in one cell line, KRAS inhibition triggered invasion upon stimulation with fibroblasts conditioned media. Inhibition of PIK3CA oncogene did not promote invasion, thus showing a KRAS-specific effect. Moreover, the invasive capacity also depended on the HGF-C-MET axis. Overall, our study awards oncogenic KRAS an important role in modulating the response to fibroblast-secreted factors either by promoting or impairing invasion, and depicts the HGF-C-MET axis as a putative therapeutic target to impair the invasive properties of mutant KRAS cancer cells.


Asunto(s)
Neoplasias Colorrectales , Factor de Crecimiento de Hepatocito , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Colorrectales/patología , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Fibroblastos/patología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
4.
Cells ; 11(13)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35805073

RESUMEN

Understanding how mutant KRAS signaling is modulated by exogenous stimuli is of utmost importance to elucidate resistance mechanisms underlying pathway inhibition failure, and to uncover novel therapeutic targets for mutant KRAS patients. Hence, aiming at perceiving KRAS-autonomous versus -non autonomous mechanisms, we studied the response of two mutant KRAS colorectal cancer cell lines (HCT116 and LS174T) upon KRAS silencing and treatment with rhTGFß1-activated fibroblasts secretome. A proteomic analysis revealed that rhTGFß1-activated fibroblast-secreted factors triggered cell line-specific proteome alterations and that mutant KRAS governs 43% and 38% of these alterations in HCT116 and LS174T cells, respectively. These KRAS-dependent proteins were localized and displayed molecular functions that were common to both cell lines (e.g., extracellular exosome, RNA binding functions). Moreover, 67% and 78% of the KRAS-associated proteome of HCT116 and LS174T cells, respectively, was controlled in a KRAS-non-autonomous manner, being dependent on fibroblast-secreted factors. In HCT116 cells, KRAS-non-autonomously controlled proteins were mainly involved in proteoglycans in cancer, p53, and Rap1 signaling pathways; whereas in LS174T cells, they were associated with substrate adhesion-dependent cell-spreading and involved in metabolic processes. This work highlights the context-dependency of KRAS-associated signaling and reinforces the importance of integrating the tumor microenvironment in the study of KRAS-associated effects.


Asunto(s)
Neoplasias Colorrectales , Proteoma , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Humanos , Mutación/genética , Proteoma/metabolismo , Proteómica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
5.
IUBMB Life ; 73(5): 761-773, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33615655

RESUMEN

The cell membrane glycoprotein CD26 with peptidase activity (DPP4) and/or its soluble CD26/DPP4 counterpart expression and/or activity are altered in several cancers. Its role in metastasis development was recently highlighted by the discovery of CD26+ cancer stem cell subsets and the fact that clinical DPP4 inhibitors showed antimetastatic effects in animal models. Also, diabetic patients treated with the DPP4 inhibitor sitagliptin showed greater overall survival after colorectal or lung cancer surgery than patients under other diabetic therapies. However, the mechanism of action of these inhibitors in this context is unclear. We studied the role of CD26 and its DPP4 enzymatic activity in malignant cell features such as cell-to-cell homotypic aggregation, cancer cell motility, and invasion in a panel of human colorectal cancer (CRC) cell lines, avoiding models that include the physiological role of DPP4 in chemotaxis. Present results indicate that CD26 participates in the induction of cell invasion, motility, and aggregation of CD26-positive CRC cell lines. Moreover, only invasion and motility assays, which are collagen matrix-dependent, showed a decrease upon treatment with the DPP4 inhibitor sitagliptin. Sitagliptin showed opposite effects to those of transforming growth factor-ß1 on epithelial-to-mesenchymal transition and cell cycle, but this result does not explain its CD26/DPP4-dependent effect. These results contribute to the elucidation of the molecular mechanisms behind sitagliptin inhibition of metastatic traits. At the same time, this role of sitagliptin may help to define areas of medicine where DPP4 inhibitors might be introduced. However, they also suggest that additional tools against CD26 as a target might be used or developed for metastasis prevention in addition to gliptins.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Fosfato de Sitagliptina/farmacología , Agregación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Dipeptidil Peptidasa 4/biosíntesis , Dipeptidil Peptidasa 4/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/fisiología , Factor de Crecimiento Transformador beta1/farmacología
6.
Cancers (Basel) ; 11(12)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847096

RESUMEN

Current evidence strongly suggests that cancer cells depend on the microenvironment in order to thrive. In fact, signals from the surrounding tumor microenvironment are crucial for cancer cells´ aggressiveness, altering their expression profile and favoring their metastatic potential. As such, targeting the tumor microenvironment to impair cancer progression became an attractive therapeutic option. Interestingly, it has been shown that oncogenic KRAS signaling promotes a pro-tumorigenic microenvironment, and the associated crosstalk alters the expression profile of cancer cells. These findings award KRAS a key role in controlling the interactions between cancer cells and the microenvironment, granting cancer a poor prognosis. Given the lack of effective approaches to target KRAS itself or its downstream effectors in the clinic, exploring such interactions may open new perspectives on possible therapeutic strategies to hinder mutant KRAS tumors. This review highlights those communications and their implications for the development of effective therapies or to provide insights regarding response to existing regimens.

7.
Cells ; 7(2)2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29463063

RESUMEN

The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.

8.
Cancer Res ; 78(1): 7-14, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263151

RESUMEN

KRAS is one of the most frequently mutated oncogenes in cancer, being a potent initiator of tumorigenesis, a strong inductor of malignancy, and a predictive biomarker of response to therapy. Despite the large investment to understand the effects of KRAS activation in cancer cells, pharmacologic targeting of KRAS or its downstream effectors has not yet been successful at the clinical level. Recent studies are now describing new mechanisms of KRAS-induced tumorigenesis by analyzing its effects on the components of the tumor microenvironment. These studies revealed that the activation of KRAS on cancer cells extends to the surrounding microenvironment, affecting the properties and functions of its constituents. Herein, we discuss the most emergent perspectives on the relationship between KRAS-mutant cancer cells and their microenvironment components. Cancer Res; 78(1); 7-14. ©2017 AACR.


Asunto(s)
Genes ras/fisiología , Neoplasias/patología , Microambiente Tumoral/genética , Matriz Extracelular/genética , Matriz Extracelular/patología , Fibroblastos/patología , Humanos , Mutación , Células Mieloides/patología , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal , Escape del Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...