Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406279

RESUMEN

In this article, a recent formulation for real-time simulation is developed combining the strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is expected to provide information in real-time about the mechanical response of soft tissue when subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can be used to predict the mechanical behavior of biological tissues not only during loading but also during unloading deformation states. To assess the accuracy achieved by the EESM, experimental data was collected from liver porcine samples via uniaxial loading and unloading tensile tests. Validation of the model through numerical predictions achieved a refresh rate of 31 fps (31.49 ms of computation time for each frame), achieving a coefficient of determination R2 from 93.23% to 99.94% when compared to experimental data. The proposed hybrid formulation to characterize soft tissue mechanical behavior is fast enough for real-time simulation and captures the soft material nonlinear virgin and stress-softened effects with high accuracy.

2.
Sensors (Basel) ; 20(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291631

RESUMEN

Laparoscopic surgery demands highly skilled surgeons. Traditionally, a surgeon's knowledge is acquired by operating under a mentor-trainee method. In recent years, laparoscopic simulators have gained ground as tools in skill acquisition. Despite the wide range of laparoscopic simulators available, few provide objective feedback to the trainee. Those systems with quantitative feedback tend to be high-end solutions with limited availability due to cost. A modular smart trainer was developed, combining tool-tracking and force-using employing commercially available sensors. Additionally, a force training system based on polydimethylsiloxane (PDMS) phantoms for sample stiffness differentiation is presented. This prototype was tested with 39 subjects, between novices (13), intermediates (13), and experts (13), evaluating execution differences among groups in training exercises. The estimated cost is USD $200 (components only), not including laparoscopic instruments. The motion system was tested for noise reduction and position validation with a mean error of 0.94 mm. Grasping force approximation showed a correlation of 0.9975. Furthermore, differences in phantoms stiffness effectively reflected user manipulation. Subject groups showed significant differences in execution time, accumulated distance, and mean and maximum applied grasping force. Accurate information was obtained regarding motion and force. The developed force-sensing tool can easily be transferred to a clinical setting. Further work will consist on a validation of the simulator on a wider range of tasks and a larger sample of volunteers.


Asunto(s)
Competencia Clínica , Laparoscopía , Simulación por Computador , Retroalimentación , Humanos , Fenómenos Mecánicos , Interfaz Usuario-Computador
4.
Appl Bionics Biomech ; 2016: 7149182, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27578960

RESUMEN

This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

5.
Comput Math Methods Med ; 2016: 6183679, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27051460

RESUMEN

Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 µm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Prótesis de Cadera , Cetonas/química , Polietilenglicoles/química , Diseño de Prótesis , Titanio/química , Aleaciones , Artroplastia de Reemplazo de Cadera/instrumentación , Artroplastia de Reemplazo de Cadera/métodos , Benzofenonas , Durapatita/química , Fémur/patología , Análisis de Elementos Finitos , Humanos , Modelos Teóricos , Oseointegración , Polímeros , Presión , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA