Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; : 271678X231217669, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017004

RESUMEN

Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.

2.
Front Neuroanat ; 16: 910477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958733

RESUMEN

The propensity to develop neurodegenerative diseases is influenced by diverse factors including genetic background, sex, lifestyle, including dietary habits and being overweight, and age. Indeed, with aging, there is an increased incidence of obesity and neurodegenerative processes, both of which are associated with inflammatory responses, in a sex-specific manner. High fat diet (HFD) commonly leads to obesity and markedly affects metabolism, both peripherally and centrally. Here we analyzed the metabolic and inflammatory responses of middle-aged (11-12 months old) transgenic amyloid precursor protein (TgAPP) mice of both sexes to HFD for 18 weeks (starting at 7-8 months of age). We found clear sex differences with females gaining significantly more weight and fat mass than males, with a larger increase in circulating leptin levels and expression of inflammatory markers in visceral adipose tissue. Glycemia and insulin levels increased in HFD fed mice of both sexes, with TgAPP mice being more affected than wild type (WT) mice. In the hypothalamus, murine amyloid ß (Aß) levels were increased by HFD intake exclusively in males, reaching statistical significance in TgAPP males. On a low fat diet (LFD), TgAPP males had significantly lower mRNA levels of the anorexigenic neuropeptide proopiomelanocortin (POMC) than WT males, with HFD intake decreasing the expression of the orexigenic neuropeptides Agouti-related peptide (AgRP) and neuropeptide Y (NPY), especially in TgAPP mice. In females, HFD increased POMC mRNA levels but had no effect on AgRP or NPY mRNA levels, and with no effect on genotype. There was no effect of diet or genotype on the hypothalamic inflammatory markers analyzed or the astrogliosis marker glial acidic protein (GFAP); however, levels of the microglial marker Iba-1 increased selectively in male TgAPP mice. In summary, the response to HFD intake was significantly affected by sex, with fewer effects due to genotype. Hypothalamic inflammatory cytokine expression and astrogliosis were little affected by HFD in middle-aged mice, although in TgAPP males, which showed increased Aß, there was microglial activation. Thus, excess intake of diets high in fat should be avoided because of its possible detrimental consequences.

3.
Proc Natl Acad Sci U S A ; 119(29): e2204527119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858325

RESUMEN

Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.


Asunto(s)
Astrocitos , Encéfalo , Insulina , Neovascularización Fisiológica , Acoplamiento Neurovascular , Animales , Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Proteína Ácida Fibrilar de la Glía/genética , Glucosa/metabolismo , Insulina/metabolismo , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor de Insulina/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Neurobiol Dis ; 159: 105495, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478848

RESUMEN

Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1ß, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12ß, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Conducta Animal/fisiología , Dieta Alta en Grasa , Disbiosis/genética , Microbioma Gastrointestinal/fisiología , Inflamación/genética , Estrés Psicológico/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Disbiosis/fisiopatología , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Ratones , Ratones Transgénicos , Fagocitosis/genética , ARN Mensajero/metabolismo , Caracteres Sexuales , Estrés Psicológico/fisiopatología
5.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352990

RESUMEN

Obesity is a risk factor for Alzheimer's disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid ß (Aß) in overweight mice because its systemic elimination may impact brain Aß load, a major landmark of AD pathology. We also analyzed whether circulating insulin-like growth factor I (IGF-I) intervenes in the effects of overweight as this growth factor modulates brain Aß clearance and is increased in the serum of overweight mice. Overweight mice showed increased Aß accumulation by the liver, the major site of elimination of systemic Aß, but unaltered brain Aß levels. We also found that Aß accumulation by hepatocytes is stimulated by IGF-I, and that mice with low serum IGF-I levels show reduced liver Aß accumulation-ameliorated by IGF-I administration, and unchanged brain Aß levels. In the brain, IGF-I favored the association of its receptor (IGF-IR) with the Aß precursor protein (APP), and at the same time, stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPß ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly reduced brain IGF-IR phosphorylation and APP/IGF-IR association were found in overweight mice as compared to lean controls. Collectively, these results indicate that a high-fat diet influences peripheral clearance of Aß without affecting brain Aß load. Increased serum IGF-I likely contributes to enhanced peripheral Aß clearance in overweight mice, without affecting brain Aß load probably because its brain entrance is reduced.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Dieta Alta en Grasa , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Ratones , Ratones Transgénicos , Sobrepeso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...