Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507413

RESUMEN

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Neoplasias Hepáticas/patología , ARN/metabolismo , Sumoilación
2.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686461

RESUMEN

The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.


Asunto(s)
Núcleo Celular , Mitocondrias , Mitocondrias/genética , Proteínas Nucleares , Cromatina , Citoplasma
3.
Adv Sci (Weinh) ; 10(29): e2301859, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548614

RESUMEN

Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time. The molecular action of SET/template-activating factor-Iß and nucleophosmin 1-representing the two most common histone chaperone folds-are examined using both nucleosomes and isolated histones. It is shown that these chaperones present binding specificity for fully dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, the histone eviction process and its modulation by cytochrome c are scrutinized. This approach shows that despite the different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.


Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Citocromos c/metabolismo , Cromatina , Proteínas Portadoras/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
4.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541251

RESUMEN

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Glucosa/metabolismo
5.
Sci Rep ; 13(1): 8293, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217546

RESUMEN

Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined. In present study we used genetic and pharmacological approaches to elucidate the molecular signals driving NNMT activation and its role during adipogenesis. Firstly, we demonstrated that during the early phase of adipocyte differentiation NNMT is transactivated by CCAAT/Enhancer Binding Protein beta (CEBPB) in response to glucocorticoid (GC) induction. We found that Nnmt knockout, using CRISPR/Cas9 approach, impaired terminal adipogenesis by influencing the timing of cellular commitment and cell cycle exit during mitotic clonal expansion, as demonstrated by cell cycle analysis and RNA sequencing experiments. Biochemical and computational methods showed that a novel small molecule, called CC-410, stably binds to and highly specifically inhibits NNMT. CC-410 was, therefore, used to modulate protein activity during pre-adipocyte differentiation stages, demonstrating that, in line with the genetic approach, chemical inhibition of NNMT at the early stages of adipogenesis impairs terminal differentiation by deregulating the GC network. These congruent results conclusively demonstrate that NNMT is a key component of the GC-CEBP axis during the early stages of adipogenesis and could be a potential therapeutic target for both early-onset obesity and glucocorticoid-induced obesity.


Asunto(s)
Adipogénesis , Nicotinamida N-Metiltransferasa , Ratones , Animales , Adipogénesis/genética , Nicotinamida N-Metiltransferasa/metabolismo , Glucocorticoides/uso terapéutico , Diferenciación Celular , Transducción de Señal , Obesidad/genética , Obesidad/tratamiento farmacológico , Células 3T3-L1 , PPAR gamma/metabolismo
6.
Hum Mol Genet ; 32(5): 790-797, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136759

RESUMEN

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.


Asunto(s)
Eosinófilos , Estudio de Asociación del Genoma Completo , Humanos , Cromosomas Humanos Par 11 , Polimorfismo de Nucleótido Simple , Inmunidad Innata
7.
Nat Commun ; 13(1): 7100, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402842

RESUMEN

It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.


Asunto(s)
Respiración de la Célula , Citocromos c , Transporte de Electrón , Fosforilación , Oxidación-Reducción
8.
Nat Struct Mol Biol ; 29(10): 1024-1036, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220893

RESUMEN

The regular functioning of the nucleolus and nucleus-mitochondria crosstalk are considered unrelated processes, yet cytochrome c (Cc) migrates to the nucleus and even the nucleolus under stress conditions. Nucleolar liquid-liquid phase separation usually serves the cell as a fast, smart mechanism to control the spatial localization and trafficking of nuclear proteins. Actually, the alternative reading frame (ARF), a tumor suppressor protein sequestered by nucleophosmin (NPM) in the nucleoli, is shifted out from NPM upon DNA damage. DNA damage also triggers early translocation of respiratory Cc to nucleus before cytoplasmic caspase activation. Here, we show that Cc can bind to nucleolar NPM by triggering an extended-to-compact conformational change, driving ARF release. Such a NPM-Cc nucleolar interaction can be extended to a general mechanism for DNA damage in which the lysine-rich regions of Cc-rather than the canonical, arginine-rich stretches of membrane-less organelle components-controls the trafficking and availability of nucleolar proteins.


Asunto(s)
Citocromos c , Nucleofosmina , Arginina , Caspasas , Lisina , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor
9.
Comput Struct Biotechnol J ; 20: 3695-3707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891793

RESUMEN

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.

10.
FEBS Open Bio ; 11(9): 2418-2440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938164

RESUMEN

Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.


Asunto(s)
Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Chaperonas de Histonas/metabolismo , Mitocondrias/metabolismo , Animales , Núcleo Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Citocromos c/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Histonas/metabolismo , Humanos , Mitocondrias/genética
11.
Front Mol Biosci ; 8: 658852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987205

RESUMEN

Cell signaling mechanisms modulate gene expression in response to internal and external stimuli. Cellular adaptation requires a precise and coordinated regulation of the transcription and translation processes. The post-transcriptional control of mRNA metabolism is mediated by the so-called RNA-binding proteins (RBPs), which assemble with specific transcripts forming messenger ribonucleoprotein particles of highly dynamic composition. RBPs constitute a class of trans-acting regulatory proteins with affinity for certain consensus elements present in mRNA molecules. However, these regulators are subjected to post-translational modifications (PTMs) that constantly adjust their activity to maintain cell homeostasis. PTMs can dramatically change the subcellular localization, the binding affinity for RNA and protein partners, and the turnover rate of RBPs. Moreover, the ability of many RBPs to undergo phase transition and/or their recruitment to previously formed membrane-less organelles, such as stress granules, is also regulated by specific PTMs. Interestingly, the dysregulation of PTMs in RBPs has been associated with the pathophysiology of many different diseases. Abnormal PTM patterns can lead to the distortion of the physiological role of RBPs due to mislocalization, loss or gain of function, and/or accelerated or disrupted degradation. This Mini Review offers a broad overview of the post-translational regulation of selected RBPs and the involvement of their dysregulation in neurodegenerative disorders, cancer and other pathologies.

12.
Redox Biol ; 43: 101967, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33882408

RESUMEN

Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B-so-called ANP32B-and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iß (SET/TAF-Iß), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B.


Asunto(s)
Citocromos c , Chaperonas de Histonas , Núcleo Celular , Daño del ADN , Proteína Fosfatasa 2
13.
Plant J ; 106(1): 74-85, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33354856

RESUMEN

Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.


Asunto(s)
Proteínas 14-3-3/metabolismo , Apoptosis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacología , Peróxido de Hidrógeno
14.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187249

RESUMEN

Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.


Asunto(s)
Citocromos c/genética , Procesamiento Proteico-Postraduccional/genética , Animales , Apoptosis/genética , Humanos , Mitocondrias/genética , Oxidación-Reducción
15.
Comput Struct Biotechnol J ; 18: 1852-1863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32728408

RESUMEN

Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.

16.
Biochim Biophys Acta Bioenerg ; 1861(12): 148277, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32717223

RESUMEN

In oxidative phosphorylation, the transfer of electrons from reduced cofactors to molecular oxygen via the electron transport chain (ETC) sustains the electrochemical transmembrane potential needed for ATP synthesis. A key component of the ETC is complex III (CIII, cytochrome bc1), which transfers electrons from reduced ubiquinone to soluble cytochrome c (Cc) coupled to proton translocation into the mitochondrial intermembrane space. One electron from every two donated by hydroquinone at site P is transferred to Cc via the Rieske-cytochrome c1 (Cc1) pathway. According to recent structural analyses of CIII and its transitory complex with Cc, the interaction between the Rieske subunit and Cc1 switches intermittently during CIII activity. However, the electrochemical properties of Cc1 and their function as a wire between Rieske and Cc are rather unexplored. Here, temperature variable cyclic voltammetry provides novel data on the thermodynamics and kinetics of interfacial electron transfer of immobilized Cc1. Findings reveal that Cc1 displays two channels for electron exchange, with a remarkably fast heterogeneous electron transfer rate. Furthermore, the electrochemical properties are strongly modulated by the binding mode of the protein. Additionally, we show that electron transfer from Cc1 to Cc is thermodynamically favored in the immobilized Cc1-Cc complex. Nuclear Magnetic Resonance, HADDOCK, and Surface Plasmon Resonance experiments provide further structural and functional data of the Cc1-Cc complex. Our data supports the Rieske-Cc1-Cc pathway acting as a unilateral switch thyristor in which redox potential modulation through protein-protein contacts are complemented with the relay-like Rieske behavior.


Asunto(s)
Fenómenos Biofísicos , Citocromos c1/metabolismo , Citocromos c/metabolismo , Adsorción , Citocromos c/química , Citocromos c1/química , Electroquímica , Transporte de Electrón , Humanos , Proteínas Inmovilizadas/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oxidación-Reducción , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Solubilidad , Termodinámica
17.
Oxid Med Cell Longev ; 2020: 6813405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377304

RESUMEN

Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor-cytochrome c-is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.


Asunto(s)
Cardiolipinas/metabolismo , Citocromos c/metabolismo , Membranas Mitocondriales/metabolismo , Humanos , Modelos Moleculares
18.
J Phys Chem Lett ; 11(10): 4198-4205, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32364390

RESUMEN

His/Cys coordination was recently found in several c-type cytochromes, which could act as sensors, in electron transport or in regulation. Toward a better understanding of Cys function and reactivity in these cytochromes, we compare cytochrome c6 (c6wt) from the cyanobacterium Nostoc PCC 7120 with its Met58Cys mutant. We probe the axial ligands and heme properties by combining visible and mid- to far-FTIR difference spectroscopies. Cys58 determines the strong negative redox potential and pH dependence of M58C (EmM58C = -375 mV, versus Emc6wt = +339 mV). Mid-IR (notably Cys ν(SH), His ν(C5N1), heme δ(CmH)) and far-IR (ν(Fe(II)-His), ν(His-Fe(III)-Cys)) markers of the heme and ligands show that Cys58 remains a strong thiolate ligand of reduced Met58Cys at alkaline pH, while it is protonated at pH 7.5, is stabilized by a strong hydrogen bonding interaction, and weakly interacts with Fe(II). These data provide a benchmark for further analysis of c-type cytochromes with natural His/Cys coordination.


Asunto(s)
Cisteína/química , Grupo Citocromo c/química , Histidina/química , Ligandos , Estructura Molecular , Protones , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
19.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842432

RESUMEN

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Humanos , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Relación Estructura-Actividad
20.
FEBS Lett ; 593(22): 3101-3119, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31663111

RESUMEN

Cytochrome c (Cc) is a protein that functions as an electron carrier in the mitochondrial respiratory chain. However, Cc has moonlighting roles outside mitochondria driving the transition of apoptotic cells from life to death. When living cells are damaged, Cc escapes its natural mitochondrial environment and, once in the cytosol, it binds other proteins to form a complex named the apoptosome-a platform that triggers caspase activation and further leads to controlled cell dismantlement. Early released Cc also binds to inositol 1,4,5-triphosphate receptors on the ER membrane, which stimulates further massive Cc release from mitochondria. Besides the well-characterized binding proteins contributing to the proapoptotic functions of Cc, many novel protein targets have been recently described. Among them, histone chaperones were identified as key partners of Cc following DNA breaks, indicating that Cc might modulate chromatin dynamics through competitive binding to histone chaperones. In this article, we review the ample set of recently discovered antiapoptotic proteins-involved in DNA damage, transcription, and energetic metabolism-reported to interact with Cc in the cytoplasm and even the nucleus upon DNA breaks.


Asunto(s)
Núcleo Celular/metabolismo , Citocromos c/metabolismo , Citoplasma/metabolismo , Ensamble y Desensamble de Cromatina , Chaperonas de Histonas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...