Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Res Protoc ; 12: e48210, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37955959

RESUMEN

BACKGROUND: Early identification of mental disorder symptoms is crucial for timely treatment and reduction of recurring symptoms and disabilities. A tool to help individuals recognize warning signs is important. We posit that such a tool would have to rely on longitudinal analysis of patterns and trends in the individual's daily activities and mood, which can now be captured through data from wearable activity trackers, speech recordings from mobile devices, and the individual's own description of their mental state. In this paper, we describe such a tool developed by our team to detect early signs of depression, anxiety, and stress. OBJECTIVE: This study aims to examine three questions about the effectiveness of machine learning models constructed based on multimodal data from wearables, speech, and self-reports: (1) How does speech about issues of personal context differ from speech while reading a neutral text, what type of speech data are more helpful in detecting mental health indicators, and how is the quality of the machine learning models influenced by multilanguage data? (2) Does accuracy improve with longitudinal data collection and how, and what are the most important features? and (3) How do personalized machine learning models compare against population-level models? METHODS: We collect longitudinal data to aid machine learning in accurately identifying patterns of mental disorder symptoms. We developed an app that collects voice, physiological, and activity data. Physiological and activity data are provided by a variety of off-the-shelf fitness trackers, that record steps, active minutes, duration of sleeping stages (rapid eye movement, deep, and light sleep), calories consumed, distance walked, heart rate, and speed. We also collect voice recordings of users reading specific texts and answering open-ended questions chosen randomly from a set of questions without repetition. Finally, the app collects users' answers to the Depression, Anxiety, and Stress Scale. The collected data from wearable devices and voice recordings will be used to train machine learning models to predict the levels of anxiety, stress, and depression in participants. RESULTS: The study is ongoing, and data collection will be completed by November 2023. We expect to recruit at least 50 participants attending 2 major universities (in Canada and Mexico) fluent in English or Spanish. The study will include participants aged between 18 and 35 years, with no communication disorders, acute neurological diseases, or history of brain damage. Data collection complied with ethical and privacy requirements. CONCLUSIONS: The study aims to advance personalized machine learning for mental health; generate a data set to predict Depression, Anxiety, and Stress Scale results; and deploy a framework for early detection of depression, anxiety, and stress. Our long-term goal is to develop a noninvasive and objective method for collecting mental health data and promptly detecting mental disorder symptoms. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48210.

2.
Sensors (Basel) ; 21(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34960385

RESUMEN

This study proposes a new index to measure the resilience of an individual to stress, based on the changes of specific physiological variables. These variables include electromyography, which is the muscle response, blood volume pulse, breathing rate, peripheral temperature, and skin conductance. We measured the data with a biofeedback device from 71 individuals subjected to a 10-min psychophysiological stress test. The data exploration revealed that features' variability among test phases could be observed in a two-dimensional space with Principal Components Analysis (PCA). In this work, we demonstrate that the values of each feature within a phase are well organized in clusters. The new index we propose, Resilience to Stress Index (RSI), is based on this observation. To compute the index, we used non-supervised machine learning methods to calculate the inter-cluster distances, specifically using the following four methods: Euclidean Distance of PCA, Mahalanobis Distance, Cluster Validity Index Distance, and Euclidean Distance of Kernel PCA. While there was no statistically significant difference (p>0.01) among the methods, we recommend using Mahalanobis, since this method provides higher monotonic association with the Resilience in Mexicans (RESI-M) scale. Results are encouraging since we demonstrated that the computation of a reliable RSI is possible. To validate the new index, we undertook two tasks: a comparison of the RSI against the RESI-M, and a Spearman correlation between phases one and five to determine if the behavior is resilient or not. The computation of the RSI of an individual has a broader scope in mind, and it is to understand and to support mental health. The benefits of having a metric that measures resilience to stress are multiple; for instance, to the extent that individuals can track their resilience to stress, they can improve their everyday life.


Asunto(s)
Biorretroalimentación Psicológica , Aprendizaje Automático , Electromiografía , Frecuencia Cardíaca , Humanos , Análisis de Componente Principal
3.
Cognit Comput ; : 1-12, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34104256

RESUMEN

To understand and approach the spread of the SARS-CoV-2 epidemic, machine learning offers fundamental tools. This study presents the use of machine learning techniques for projecting COVID-19 infections and deaths in Mexico. The research has three main objectives: first, to identify which function adjusts the best to the infected population growth in Mexico; second, to determine the feature importance of climate and mobility; third, to compare the results of a traditional time series statistical model with a modern approach in machine learning. The motivation for this work is to support health care providers in their preparation and planning. The methods compared are linear, polynomial, and generalized logistic regression models to describe the growth of COVID-19 incidents in Mexico. Additionally, machine learning and time series techniques are used to identify feature importance and perform forecasting for daily cases and fatalities. The study uses the publicly available data sets from the John Hopkins University of Medicine in conjunction with the mobility rates obtained from Google's Mobility Reports and climate variables acquired from the Weather Online API. The results suggest that the logistic growth model fits best the pandemic's behavior, that there is enough correlation of climate and mobility variables with the disease numbers, and that the Long short-term memory network can be exploited for predicting daily cases. Given this, we propose a model to predict daily cases and fatalities for SARS-CoV-2 using time series data, mobility, and weather variables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...