Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253420

RESUMEN

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Membranas Mitocondriales , Citoesqueleto , Membranas Asociadas a Mitocondrias , Proteínas de Drosophila/genética
2.
Oncogene ; 42(23): 1926-1939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106126

RESUMEN

We previously showed that elevated TYMS exhibits oncogenic properties and promotes tumorigenesis after a long latency, suggesting cooperation with sequential somatic mutations. Here we report the cooperation of ectopic expression of human TYMS with loss of Ink4a/Arf, one of the most commonly mutated somatic events in human cancer. Using an hTS/Ink4a/Arf -/- genetically engineered mouse model we showed that deregulated TYMS expression in Ink4a/Arf null background accelerates tumorigenesis and metastasis. In addition, tumors from TYMS-expressing mice were associated with a phenotype of genomic instability including enhanced double strand DNA damage, aneuploidy and loss of G1/S checkpoint. Downregulation of TYMS in vitro decreased cell proliferation and sensitized tumor cells to antimetabolite chemotherapy. In addition, depletion of TYMS in vivo by TYMS shRNA reduced tumor incidence, delayed tumor progression and prolonged survival in hTS/Ink4a/Arf -/- mice. Our data shows that activation of TYMS in Ink4a/Arf null background enhances uncontrolled cell proliferation and tumor growth, supporting the development of new agents and strategies targeting TYMS to delay tumorigenesis and prolong survival.


Asunto(s)
Neoplasias , Timidilato Sintasa , Animales , Humanos , Ratones , Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inestabilidad Genómica , Neoplasias/genética , Timidilato Sintasa/genética , Proteína p14ARF Supresora de Tumor
3.
JCI Insight ; 8(10)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37097751

RESUMEN

Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.


Asunto(s)
Antagonistas del Ácido Fólico , Ratones , Animales , Humanos , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Antagonistas del Ácido Fólico/química , Inhibidores Enzimáticos/farmacología , Resistencia a Medicamentos , Timidilato Sintasa
4.
J Pept Sci ; 29(7): e3477, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36606596

RESUMEN

Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.


Asunto(s)
Ácidos Nucleicos de Péptidos , Rutenio , Humanos , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/química , ARN , Células HEK293 , Rutenio/farmacología , Rutenio/química , Péptidos
5.
Nat Commun ; 13(1): 1426, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301315

RESUMEN

Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson's disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Ratones , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 11(1): 5226, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067463

RESUMEN

Signs of proteostasis failure often entwine with those of metabolic stress at the cellular level. Here, we study protein sequestration during glucose deprivation-induced ATP decline in Saccharomyces cerevisiae. Using live-cell imaging, we find that sequestration of misfolded proteins and nascent polypeptides into two distinct compartments, stress granules, and Q-bodies, is triggered by the exhaustion of ATP. Both compartments readily dissolve in a PKA-dependent manner within minutes of glucose reintroduction and ATP level restoration. We identify the ATP hydrolase activity of Hsp104 disaggregase as the critical ATP-consuming process determining compartments abundance and size, even in optimal conditions. Sequestration of proteins into distinct compartments during acute metabolic stress and their retrieval during the recovery phase provide a competitive fitness advantage, likely promoting cell survival during stress.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Hidrólisis , Agregado de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad
8.
Chem Senses ; 44(6): 409-422, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31125082

RESUMEN

The metabolic hormone adiponectin is secreted into the circulation by adipocytes and mediates key biological functions, including insulin sensitivity, adipocyte development, and fatty acid oxidation. Adiponectin is also abundant in saliva, where its functions are poorly understood. Here we report that murine taste receptor cells (TRCs) express specific adiponectin receptors and may be a target for salivary adiponectin. This is supported by the presence of all three known adiponectin receptors in transcriptomic data obtained by RNA-seq analysis of purified circumvallate (CV) taste buds. As well, immunohistochemical analysis of murine CV papillae showed that two adiponectin receptors, ADIPOR1 and T-cadherin, are localized to subsets of TRCs. Immunofluorescence for T-cadherin was primarily co-localized with the Type 2 TRC marker phospholipase C ß2, suggesting that adiponectin signaling could impact sweet, bitter, or umami taste signaling. However, adiponectin null mice showed no differences in behavioral lick responsiveness compared with wild-type controls in brief-access lick testing. AAV-mediated overexpression of adiponectin in the salivary glands of adiponectin null mice did result in a small but significant increase in behavioral lick responsiveness to the fat emulsion Intralipid. Together, these results suggest that salivary adiponectin can affect TRC function, although its impact on taste responsiveness and peripheral taste coding remains unclear.


Asunto(s)
Adiponectina/metabolismo , Receptores de Adiponectina/biosíntesis , Papilas Gustativas/citología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Papilas Gustativas/metabolismo
9.
Aging (Albany NY) ; 10(9): 2407-2427, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30227387

RESUMEN

Heat-induced hormesis is a well-known conserved phenomenon in aging, traditionally attributed to the benefits conferred by increased amounts of heat shock (HS) proteins. Here we find that the key event for the HS-induced lifespan extension in budding yeast is the switch from glycolysis to respiratory metabolism. The resulting increase in reactive oxygen species activates the antioxidant response, supported by the redirection of glucose from glycolysis to the pentose phosphate pathway, increasing the production of NADPH. This sequence of events culminates in replicative lifespan (RLS) extension, implying decreased mortality per generation that persists even after the HS has finished. We found that switching to respiratory metabolism, and particularly the consequent increase in glutathione levels, were essential for the observed RLS extension. These results draw the focus away solely from the HS response and demonstrate that the antioxidant response has a key role in heat-induced hormesis. Our findings underscore the importance of the changes in cellular metabolic activity for heat-induced longevity in budding yeast.


Asunto(s)
Glutatión/metabolismo , Respuesta al Choque Térmico/fisiología , Saccharomycetales/metabolismo , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , NADP/metabolismo , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo
10.
Mol Ther Methods Clin Dev ; 10: 1-7, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30073177

RESUMEN

Adeno-associated virus (AAV) is one of the most promising gene therapy vectors and is widely used as a gene delivery vehicle for basic research. As AAV continues to become the vector of choice, it is increasingly important for new researchers to have access to a simplified production and purification protocol for laboratory grade recombinant AAV. Here we report a detailed protocol for serotype independent production of AAV using a helper-free HEK293 cell system followed by iodixanol gradient purification, a method described earlier.1 While the core principals of this mammalian AAV production system are unchanged, there have been significant advancements in the production and purification procedure that serve to boost yield, maximize efficiency, and increase the purity of AAV preps. Using this protocol, we are able to constantly obtain high quantities of laboratory grade AAV particles (>5 × 1012 vg) in a week's time, largely independent of serotype.

11.
Elife ; 72018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570052

RESUMEN

Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Aging Cell ; 16(5): 994-1005, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28613034

RESUMEN

Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability. This mechanism culminates in the extension of yeast replicative lifespan (RLS) that is fully reliant on both TORC1 deactivation and Snf1/AMPK activation. Specifically, we identify oxygen consumption increase as the downstream effect of Snf1 activation responsible for the entire RLS extension. Our results set a novel paradigm for the role of proteostasis in aging: modulation of the misfolded protein level can affect cellular metabolic features as well as mitochondrial activity and consequently modify lifespan. The described mechanism is expected to open new avenues for research of aging and age-related diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , División Celular , Proteínas HSP90 de Choque Térmico/genética , Redes y Vías Metabólicas/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/genética , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética
13.
Sci Rep ; 6: 28751, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346163

RESUMEN

In cells living under optimal conditions, protein folding defects are usually prevented by the action of chaperones. Here, we investigate the cell-wide consequences of loss of chaperone function in cytosol, mitochondria or the endoplasmic reticulum (ER) in budding yeast. We find that the decline in chaperone activity in each compartment results in loss of respiration, demonstrating the dependence of mitochondrial activity on cell-wide proteostasis. Furthermore, each chaperone deficiency triggers a response, presumably via the communication among the folding environments of distinct cellular compartments, termed here the cross-organelle stress response (CORE). The proposed CORE pathway encompasses activation of protein conformational maintenance machineries, antioxidant enzymes, and metabolic changes simultaneously in the cytosol, mitochondria, and the ER. CORE induction extends replicative and chronological lifespan in budding yeast, highlighting its protective role against moderate proteotoxicity and its consequences such as the decline in respiration. Our findings accentuate that organelles do not function in isolation, but are integrated in a functional crosstalk, while also highlighting the importance of organelle communication in aging and age-related diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
PLoS Genet ; 10(10): e1004718, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340742

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Proteínas de Caenorhabditis elegans/biosíntesis , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Estrés Oxidativo/genética , Enfermedad de Parkinson/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...