Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 7: 74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375546

RESUMEN

OBJECTIVES: Utilize a prospective in vivo clinical trial to evaluate the potential for mild neck compression applied during head impact exposure to reduce anatomical and physiological biomarkers of brain injury. METHODS: This project utilized a prospective randomized controlled trial to evaluate effects of mild jugular vein (neck) compression (collar) relative to controls (no collar) during a competitive hockey season (males; 16.3 ± 1.2 years). The collar was designed to mildly compress the jugular vein bilaterally with the goal to increase intracranial blood volume to reduce risk of brain slosh injury during head impact exposure. Helmet sensors were used to collect daily impact data in excess of 20 g (games and practices) and the primary outcome measures, which included changes in white matter (WM) microstructure, were assessed by diffusion tensor imaging (DTI). Specifically, four DTI measures: fractional anisotropy, mean diffusivity (MD), axial diffusivity, and radial diffusivity (RD) were used in the study. These metrics were analyzed using the tract-based Spatial Statistics (TBSS) approach - a voxel-based analysis. In addition, electroencephalography-derived event-related potentials were used to assess changes in brain network activation (BNA) between study groups. RESULTS: For athletes not wearing the collar, DTI measures corresponding to a disruption of WM microstructure, including MD and RD, increased significantly from pre-season to mid-season (p < 0.05). Athletes wearing the collar did not show a significant change in either MD or RD despite similar accumulated linear accelerations from head impacts (p > 0.05). In addition to these anatomical findings, electrophysiological network analysis of the degree of congruence in the network electrophysiological activation pattern demonstrated concomitant changes in brain network dynamics in the non-collar group only (p < 0.05). Similar to the DTI findings, the increased change in BNA score in the non-collar relative to the collar group was statistically significant (p < 0.01). Changes in DTI outcomes were also directly correlated with altered brain network dynamics (r = 0.76; p < 0.05) as measured by BNA. CONCLUSION: Group differences in the longitudinal changes in both neuroanatomical and electrophysiological measures, as well as the correlation between the measures, provide initial evidence indicating that mild jugular vein compression may have reduced alterations in the WM response to head impacts during a competitive hockey season. The data indicate sport-related alterations in WM microstructure were ameliorated by application of jugular compression during head impact exposure. These results may lead to a novel line of research inquiry to evaluate the effects of protecting the brain from sports-related head impacts via optimized intracranial fluid dynamics.

2.
Br J Sports Med ; 50(20): 1276-1285, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27307271

RESUMEN

BACKGROUND: Historical approaches to protect the brain from outside the skull (eg, helmets and mouthpieces) have been ineffective in reducing internal injury to the brain that arises from energy absorption during sports-related collisions. We aimed to evaluate the effects of a neck collar, which applies gentle bilateral jugular vein compression, resulting in cerebral venous engorgement to reduce head impact energy absorption during collision. Specifically, we investigated the effect of collar wearing during head impact exposure on brain microstructure integrity following a competitive high school American football season. METHODS: A prospective longitudinal controlled trial was employed to evaluate the effects of collar wearing (n=32) relative to controls (CTRL; n=30) during one competitive football season (age: 17.04±0.67 years). Impact exposure was collected using helmet sensors and white matter (WM) integrity was quantified based on diffusion tensor imaging (DTI) serving as the primary outcome. RESULTS: With similar overall g-forces and total head impact exposure experienced in the two study groups during the season (p>0.05), significant preseason to postseason changes in mean diffusivity, axial diffusivity and radial diffusivity in the WM integrity were noted in the CTRL group (corrected p<0.05) but not in the collar group (p>0.05). The CTRL group demonstrated significantly larger preseason to postseason DTI change in multiple WM regions compared with the collar group (corrected p<0.05). DISCUSSION: Reduced WM diffusivity alteration was noted in participants wearing a neck collar after a season of competitive football. Collar wearing may have provided a protective effect against brain microstructural changes after repetitive head impacts. TRIAL REGISTRATION NUMBER: NCT02696200.


Asunto(s)
Traumatismos en Atletas/prevención & control , Traumatismos Craneocerebrales/prevención & control , Fútbol Americano/lesiones , Venas Yugulares , Equipos de Seguridad , Acelerometría , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora , Cabeza , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Cuello/diagnóstico por imagen , Neuroimagen , Estudios Prospectivos , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...