Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 7927-7933, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885648

RESUMEN

In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin-orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin-orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin-orbital states.

2.
J Phys Chem Lett ; 14(33): 7404-7410, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37566795

RESUMEN

Several nanowire properties are strongly dependent on their diameter, which is notoriously difficult to control for III-Sb nanowires compared with other III-V nanowires. Herein environmental transmission electron microscopy is utilized to study the growth of Au nanoparticle seeded GaSb nanowires in situ. In this study, the real time changes to morphology and nanoparticle composition as a result of precursor V/III ratio are investigated. For a wide range of the growth parameters, it is observed that decreasing the V/III ratio increases the nanoparticle volume through Ga accumulation in the nanoparticle. The increase in nanoparticle volume in turn forces the nanowire diameter to expand. The effect of the V/III ratio on diameter allows the engineering of diameter modulated nanowires, where the modulation persisted after the growth. Lastly, this study demonstrates the observed trends can be reproduced in a conventional ex situ system, highlighting the transferability and importance of the results obtained in situ.

3.
ACS Nano ; 17(8): 7674-7684, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37017472

RESUMEN

Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.

4.
Phys Rev Lett ; 130(8): 087003, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898111

RESUMEN

We explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system. The energetics are determined here with the detuning conditions of the double dot system and stopping-potential measurements that constitute a microwave version of the photoelectric effect.

5.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36838995

RESUMEN

Si1-xGex nanowires (NWs) were prepared by gold-supported chemical vapor deposition (CVD) using a single-source precursor with preformed Si-Ge bonds. Besides the tamed reactivity of the precursor, the approach reduces the process parameters associated with the control of decomposition characteristics and the dosing of individual precursors. The group IV alloy NWs are single crystalline with a constant diameter along their axis. During the wire growth by low pressure CVD, an Au-containing surface layer on the NWs forms by surface diffusion from the substrate, which can be removed by a combination of oxidation and etching. The electrical properties of the Si1-xGex/Au core-shell NWs are compared to the Si1-xGex NWs after Au removal. Core-shell NWs show signatures of metal-like behavior, while the purely semiconducting NWs reveal typical signatures of intrinsic Si1-xGex. The synthesized materials should be of high interest for applications in nano- and quantum-electronics.

6.
Nanoscale Horiz ; 8(2): 291-296, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36621012

RESUMEN

Lateral dimensions of III-V nanowires are known to affect the growth dynamics and crystal structure. Investigations into size effects have in the past relied on theoretical models and post growth observations, which only give a limited insight into the growth dynamics. Here we show the first experimental investigation into how nanowire diameter affects the growth dynamics by growing Au-seeded GaAs nanowires in an environmental transmission electron microscope. This was done by recording videos of nanowires during growth and analysing the Ga-limited incubation time and As-limited step-flow time. Our data show that the incubation time is stable across the investigated diameter range aside from a sharp increase for the smallest diameter, whereas the step-flow time is observed to steadily increase across the diameter range. We show using a simple model that this can be explained by the increasing vapour pressure in the droplet. In addition to the existing understanding of nanowire growth at small dimensions being limited by nucleation this work provides experimental evidence that growth is also limited by the inability to finish the step-flow process.

7.
Nanoscale Adv ; 4(16): 3330-3341, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131713

RESUMEN

In this work we demonstrate a two-fold selectivity control of InAs shells grown on crystal phase and morphology engineered GaAs nanowire (NW) core templates. This selectivity occurs driven by differences in surface energies of the NW core facets. The occurrence of the different facets itself is controlled by either forming different crystal phases or additional tuning of the core NW morphology. First, in order to study the crystal phase selectivity, GaAs NW cores with an engineered crystal phase in the axial direction were employed. A crystal phase selective growth of InAs on GaAs was found for high growth rates and short growth times. Secondly, the facet-dependant selectivity of InAs growth was studied on crystal phase controlled GaAs cores which were additionally morphology-tuned by homoepitaxial overgrowth. Following this route, the original hexagonal cores with {110} sidewalls were converted into triangular truncated NWs with ridges and predominantly {112}B facets. By precisely tuning the growth parameters, the growth of InAs is promoted over the ridges and reduced over the {112}B facets with indications of also preserving the crystal phase selectivity. In all cases (different crystal phase and facet termination), selectivity is lost for extended growth times, thus, limiting the total thickness of the shell grown under selective conditions. To overcome this issue we propose a 2-step growth approach, combining a high growth rate step followed by a low growth rate step. The control over the thickness of the InAs shells while maintaining the selectivity is demonstrated by means of a detailed transmission electron microscopy analysis. This proposed 2-step growth approach enables new functionalities in 1-D structures formed by using bottom-up techniques, with a high degree of control over shell thickness and deposition selectivity.

8.
Microsc Microanal ; : 1-9, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35644630

RESUMEN

The world of environmental microscopy provides the possibility to study and analyze transformations and reactions during realistic conditions to understand the processes better. We report on the design and development of a metal-organic chemical vapor deposition (MOCVD) system integrated with an environmental transmission electron microscope intended for real-time investigations of crystal growth. We demonstrate methods for achieving a wide range of precisely controlled concentrations of precursor gas at the sample, as well as for calibrating the sample partial pressure using the pressure measured elsewhere in the microscope column. The influences of elevated temperature and reactive gas within the pole-piece gap are evaluated with respect to imaging and spectroscopy. We show that X-ray energy-dispersive spectroscopy can be strongly affected by temperatures beyond 500$^{\circ }$C, while the spatial resolution is largely unaffected by heat and microscope pressure for the relevant conditions. Finally, the influence of the electron beam on the investigated processes is discussed. With this work, we aim to provide crucial input in the development of advanced in situ electron microscopy systems for studies of complex reactions in real time under realistic conditions, for instance as used during formation of semiconductor crystals.

9.
Phys Rev Lett ; 128(4): 040602, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148140

RESUMEN

We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increases toward the Landauer limit k_{B}Tln2, the work fluctuations decrease in accordance with the work fluctuation-dissipation relation. We compare the results to a protocol without measurement and feedback and show that when no information is used, the work output and fluctuations vanish simultaneously, contrasting the information-to-energy conversion case where increasing amount of work is produced with decreasing fluctuations. Our study highlights the importance of fluctuations in the design of information-to-work conversion processes.

10.
Phys Rev Lett ; 129(27): 270601, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638287

RESUMEN

In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry: optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.

11.
J Am Chem Soc ; 144(1): 248-258, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34949090

RESUMEN

Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.

12.
ACS Nanosci Au ; 2(1): 49-56, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37101516

RESUMEN

With the increased demand for controlled deterministic growth of III-V semiconductors at the nanoscale, the impact and interest of understanding defect formation and crystal structure switching becomes increasingly important. Vapor-liquid-solid (VLS) growth of semiconductor nanocrystals is an important mechanism for controlling and studying the formation of individual crystal layers and stacking defects. Using in situ studies, combining atomic resolution of transmission electron microscopy and controlled VLS crystal growth using metal organic chemical vapor deposition, we investigate the simplest achievable change in atomic layer stacking-single twinned layers formed in GaAs. Using Au-assisted GaAs nanowires of various diameters, we study the formation of individual layers with atomic resolution to reveal the growth difference in forming a twin defect. We determine that the formation of a twinned layer occurs significantly more slowly than that of a normal crystal layer. To understand this, we conduct thermodynamic modeling and determine that the propagation of a twin is limited by the energy cost of forming the twin interface. Finally, we determine that the slower propagation of twinned layers increases the probability of additional layers nucleating, such that multiple layers grow simultaneously. This observation challenges the current understanding that continuous uniform epitaxial growth, especially in the case of liquid-metal assisted nanowires, proceeds one single layer at a time and that its progression is limited by the nucleation rate.

13.
ACS Nanosci Au ; 2(3): 239-249, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37101824

RESUMEN

Ternary III-V nanowires are commonly grown using the Au-seeded vapor-liquid-solid method, wherein the solid nanowires are grown from nanoscale liquid seed particles, which are supplied with growth species from the surrounding vapor phase. A result of the small size of these seed particles is that their composition can vary significantly during the cyclical layer-by-layer growth, despite experiencing a constant pressure of growth species from the surrounding vapor phase. Variations in the seed particle composition can greatly affect the solid nanowire composition, and these cyclical dynamics are poorly understood for ternary nanowire growth. Here, we present a method for simulating nanowire growth which captures the complex cyclical dynamics using a kinetic Monte Carlo framework. In the framework, a nanowire grows through the attachment or detachment of one III-V pair at the time, with rates that are based on the momentary composition of the seed particle. The composition of the seed evolves through the attachment and detachment of III-V pairs to the solid nanowire and through the impingement or evaporation of single atoms to the surrounding vapor. Here, we implement this framework using the As-Au-Ga-In materials system and use it to simulate the growth of Au-seeded InGaAs nanowires with an average solid Ga/III ratio around 0.5. The results show that nucleation preferentially occurs via clusters of InAs and that the compositional hierarchy of the liquid seed (X As < X Ga < X In) determines much of the dynamics of the system. We see that imposing a constraint on the simulation, that only the most recently attached III-V pair can be detached, resulted in a significant narrowing of the compositional profile of the nanowire. In addition, our results suggest that, for ternary systems where the two binaries are heavily mismatched, the dynamics of the seed particle may result in an oscillating compositional profile.

14.
ACS Nanosci Au ; 2(6): 539-548, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37101854

RESUMEN

Au-seeded semiconductor nanowires have classically been considered to only grow in a layer-by-layer growth mode, where individual layers nucleate and grow one at a time with an incubation step in between. Recent in situ investigations have shown that there are circumstances where binary semiconductor nanowires grow in a multilayer fashion, creating a stack of incomplete layers at the interface between a nanoparticle and a nanowire. In the current investigation, the growth behavior in ternary InGaAs nanowires has been analyzed in situ, using environmental transmission electron microscopy. The investigation has revealed that multilayer growth also occurs for ternary nanowires and appears to be more common than in the binary case. In addition, the size of the multilayer stacks observed is much larger than what has been reported previously. The investigation details the implications of multilayers for the overall growth of the nanowires, as well as the surrounding conditions under which it has manifested. We show that multilayer growth is highly dynamic, where the stack of layers regularly changes size by transporting material between the growing layers. Another observation is that multilayer growth can be initiated in conjunction with the formation of crystallographic defects and compositional changes. In addition, the role that multilayers can have in behaviors such as growth failure and kinking, sometimes observed when creating heterostructures between GaAs and InAs ex situ, is discussed. The prevalence of multilayer growth in this ternary material system implies that, in order to fully understand and accurately predict the growth of nanowires of complex composition and structure, multilayer growth has to be considered.

15.
Nanotechnology ; 33(10)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34847548

RESUMEN

We study usingin situtransmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende 〈111〉 or the equivalent wurtzite〈0001〉 direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.

16.
Phys Chem Chem Phys ; 23(44): 25019-25023, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34730587

RESUMEN

The electronic band structure of complex nanostructured semiconductors has a considerable effect on the final electronic and optical properties of the material and, ultimately, on the functionality of the devices incorporating them. Valence electron energy-loss spectroscopy (VEELS) in the transmission electron microscope (TEM) provides the possibility of measuring this property of semiconductors with high spatial resolution. However, it still represents a challenge for narrow-bandgap semiconductors, since an electron beam with low energy spread is required. Here we demonstrate that by means of monochromated VEELS we can study the electronic band structure of narrow-gap materials GaSb and InAs in the form of heterostructured nanowires, with bandgap values down to 0.5 eV, especially important for newly developed structures with unknown bandgaps. Using complex heterostructured InAs-GaSb nanowires, we determine a bandgap value of 0.54 eV for wurtzite InAs. Moreover, we directly compare the bandgaps of wurtzite and zinc blende polytypes of GaSb in a single nanostructure, measured here as 0.84 and 0.75 eV, respectively. This allows us to solve an existing controversy in the band alignment between these structures arising from theoretical predictions. The findings demonstrate the potential of monochromated VEELS to provide a better understanding of the band alignment at the heterointerfaces of narrow-bandgap complex nanostructured materials with high spatial resolution. This is especially important for semiconductor device applications where even the slightest variations of the electronic band structure at the nanoscale can play a crucial role in their functionality.

17.
Nat Commun ; 12(1): 5990, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645829

RESUMEN

Scaling down material synthesis to crystalline structures only few atoms in size and precisely positioned in device configurations remains highly challenging, but is crucial for new applications e.g., in quantum computing. We propose to use the sidewall facets of larger III-V semiconductor nanowires (NWs), with controllable axial stacking of different crystal phases, as templates for site-selective growth of ordered few atoms 1D and 2D structures. We demonstrate this concept of self-selective growth by Bi deposition and incorporation into the surfaces of GaAs NWs to form GaBi structures. Using low temperature scanning tunneling microscopy (STM), we observe the crystal structure dependent self-selective growth process, where ordered 1D GaBi atomic chains and 2D islands are alloyed into surfaces of the wurtzite (Wz) [Formula: see text] crystal facets. The formation and lateral extension of these surface structures are controlled by the crystal structure and surface morphology uniquely found in NWs. This allows versatile high precision design of structures with predicted novel topological nature, by using the ability of NW heterostructure variations over orders of magnitude in dimensions with atomic-scale precision as well as controllably positioning in larger device structures.

18.
Nat Commun ; 12(1): 5130, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446735

RESUMEN

Converting incoming photons to electrical current is the key operation principle of optical photodetectors and it enables a host of emerging quantum information technologies. The leading approach for continuous and efficient detection in the optical domain builds on semiconductor photodiodes. However, there is a paucity of efficient and continuous photon detectors in the microwave regime, because photon energies are four to five orders of magnitude lower therein and conventional photodiodes do not have that sensitivity. Here we tackle this gap and demonstrate how microwave photons can be efficiently and continuously converted to electrical current in a high-quality, semiconducting nanowire double quantum dot resonantly coupled to a cavity. In particular, in our photodiode device, an absorbed photon gives rise to a single electron tunneling through the double dot, with a conversion efficiency reaching 6%.

19.
J Phys Chem Lett ; 12(31): 7590-7595, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34347497

RESUMEN

The nanowire geometry is favorable for the growth of ternary semiconductor materials, because the composition and properties can be tuned freely without substrate lattice matching. To achieve precise control of the composition in ternary semiconductor nanowires, a deeper understanding of the growth is required. One unknown aspect of seeded nanowire growth is how the composition of the catalyst nanoparticle affects the resulting composition of the growing nanowire. We report the first in situ measurements of the nanoparticle and InxGa1-xAs nanowire compositional relationship using an environmental transmission electron microscopy setup. The compositions were measured and correlated during growth, via X-ray energy dispersive spectroscopy. Contrary to predictions from thermodynamic models, the experimental results do not show a miscibility gap. Therefore, we construct a kinetic model that better predicts the compositional trends by suppressing the miscibility gap. The findings imply that compositional control of InxGa1-xAs nanowires is possible across the entire compositional range.

20.
ACS Nano ; 15(1): 1133-1144, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33439621

RESUMEN

Hot electron relaxation and transport in nanostructures involve a multitude of ultrafast processes whose interplay and relative importance are still not fully understood, but which are relevant for future applications in areas such as photocatalysis and optoelectronics. To unravel these processes, their dynamics in both time and space must be studied with high spatiotemporal resolution in structurally well-defined nanoscale objects. We employ time-resolved photoemission electron microscopy to image the relaxation of photogenerated hot electrons within InAs nanowires on a femtosecond time scale. We observe transport of hot electrons to the nanowire surface within 100 fs caused by surface band bending. We find that electron-hole scattering substantially influences hot electron cooling during the first few picoseconds, while phonon scattering is prominent at longer time scales. The time scale of cooling is found to differ between the well-defined wurtzite and zincblende crystal segments of the nanowires depending on excitation light polarization. The scattering and transport mechanisms identified will play a role in the rational design of nanostructures for hot-electron-based applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA