Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
2.
JAMA ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696201

RESUMEN

This Viewpoint discusses the death of a patient caused by unregulated biological products and efforts to encourage federal government oversight of such products.

3.
JAMA Intern Med ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739397

RESUMEN

Importance: Experimental and observational studies have suggested that empirical treatment for bacterial sepsis with antianaerobic antibiotics (eg, piperacillin-tazobactam) is associated with adverse outcomes compared with anaerobe-sparing antibiotics (eg, cefepime). However, a recent pragmatic clinical trial of piperacillin-tazobactam and cefepime showed no difference in short-term outcomes at 14 days. Further studies are needed to help clarify the empirical use of these agents. Objective: To examine the use of piperacillin-tazobactam compared with cefepime in 90-day mortality in patients treated empirically for sepsis, using instrumental variable analysis of a 15-month piperacillin-tazobactam shortage. Design, Setting, and Participants: In a retrospective cohort study, hospital admissions at the University of Michigan from July 1, 2014, to December 31, 2018, including a piperacillin-tazobactam shortage period from June 12, 2015, to September 18, 2016, were examined. Adult patients with suspected sepsis treated with vancomycin and either piperacillin-tazobactam or cefepime for conditions with presumed equipoise between piperacillin-tazobactam and cefepime were included in the study. Data analysis was conducted from December 17, 2022, to April 11, 2023. Main Outcomes and Measures: The primary outcome was 90-day mortality. Secondary outcomes included organ failure-free, ventilator-free, and vasopressor-free days. The 15-month piperacillin-tazobactam shortage period was used as an instrumental variable for unmeasured confounding in antibiotic selection. Results: Among 7569 patients (4174 men [55%]; median age, 63 [IQR 52-73] years) with sepsis meeting study eligibility, 4523 were treated with vancomycin and piperacillin-tazobactam and 3046 were treated with vancomycin and cefepime. Of patients who received piperacillin-tazobactam, only 152 (3%) received it during the shortage. Treatment groups did not differ significantly in age, Charlson Comorbidity Index score, Sequential Organ Failure Assessment score, or time to antibiotic administration. In an instrumental variable analysis, piperacillin-tazobactam was associated with an absolute mortality increase of 5.0% at 90 days (95% CI, 1.9%-8.1%) and 2.1 (95% CI, 1.4-2.7) fewer organ failure-free days, 1.1 (95% CI, 0.57-1.62) fewer ventilator-free days, and 1.5 (95% CI, 1.01-2.01) fewer vasopressor-free days. Conclusions and Relevance: Among patients with suspected sepsis and no clear indication for antianaerobic coverage, administration of piperacillin-tazobactam was associated with higher mortality and increased duration of organ dysfunction compared with cefepime. These findings suggest that the widespread use of empirical antianaerobic antibiotics in sepsis may be harmful.

4.
J Immunol ; 212(8): 1269-1275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560811

RESUMEN

Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.


Asunto(s)
Enfermedades Pulmonares , Microbiota , Humanos , Pulmón
6.
Artículo en Inglés | MEDLINE | ID: mdl-38271553

RESUMEN

RATIONALE: Chronic lung allograft dysfunction (CLAD) is the leading cause of death following lung transplant, and azithromycin has variable efficacy in CLAD. The lung microbiome is a risk factor for developing CLAD, but the relationship between lung dysbiosis, pulmonary inflammation, and allograft dysfunction remains poorly understood. Whether lung microbiota predict outcomes or modify treatment response after CLAD is unknown. OBJECTIVES: To determine whether lung microbiota predict post-CLAD outcomes and clinical response to azithromycin. METHODS: Retrospective cohort study using acellular bronchoalveolar lavage (BAL) fluid prospectively collected from lung transplant recipients within 90 days of CLAD onset. Lung microbiota were characterized using 16S rRNA gene sequencing and ddPCR. In two additional cohorts, causal relationships of dysbiosis and inflammation were evaluated by comparing lung microbiota with CLAD-associated cytokines and measuring ex vivo P. aeruginosa growth in sterilized BAL fluid. MEASUREMENTS AND MAIN RESULTS: Patients with higher bacterial burden had shorter post-CLAD survival, independent of CLAD phenotype, azithromycin treatment, and relevant covariates. Azithromycin treatment improved survival in patients with high bacterial burden, but had negligible impact on patients with low or moderate burden. Lung bacterial burden was positively associated with CLAD-associated cytokines, and ex vivo growth of P. aeruginosa was augmented in BAL fluid from transplant recipients with CLAD. CONCLUSIONS: In lung transplant patients with chronic rejection, increased lung bacterial burden is an independent risk factor for mortality and predicts clinical response to azithromycin. Lung bacterial dysbiosis is associated with alveolar inflammation and may be promoted by underlying lung allograft dysfunction.

7.
MMWR Morb Mortal Wkly Rep ; 72(5253): 1385-1389, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175804

RESUMEN

During July 7-11, 2023, CDC received reports of two patients in different states with a tuberculosis (TB) diagnosis following spinal surgical procedures that used bone allografts containing live cells from the same deceased donor. An outbreak associated with a similar product manufactured by the same tissue establishment (i.e., manufacturer) occurred in 2021. Because of concern that these cases represented a second outbreak, CDC and the Food and Drug Administration worked with the tissue establishment to determine that this product was obtained from a donor different from the one implicated in the 2021 outbreak and learned that the bone allograft product was distributed to 13 health care facilities in seven states. Notifications to all seven states occurred on July 12. As of December 20, 2023, five of 36 surgical bone allograft recipients received laboratory-confirmed TB disease diagnoses; two patients died of TB. Whole-genome sequencing demonstrated close genetic relatedness between positive Mycobacterium tuberculosis cultures from surgical recipients and unused product. Although the bone product had tested negative by nucleic acid amplification testing before distribution, M. tuberculosis culture of unused product was not performed until after the outbreak was recognized. The public health response prevented up to 53 additional surgical procedures using allografts from that donor; additional measures to protect patients from tissue-transmitted M. tuberculosis are urgently needed.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Estados Unidos/epidemiología , Tuberculosis/epidemiología , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Donantes de Tejidos , Brotes de Enfermedades , Aloinjertos
8.
Clin Microbiol Infect ; 30(4): 499-506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38163481

RESUMEN

OBJECTIVES: Diagnostic error in the use of respiratory cultures for ventilator-associated pneumonia (VAP) fuels misdiagnosis and antibiotic overuse within intensive care units. In this prospective quasi-experimental study (NCT05176353), we aimed to evaluate the safety, feasibility, and efficacy of a novel VAP-specific bundled diagnostic stewardship intervention (VAP-DSI) to mitigate VAP over-diagnosis/overtreatment. METHODS: We developed and implemented a VAP-DSI using an interruptive clinical decision support tool and modifications to clinical laboratory workflows. Interventions included gatekeeping access to respiratory culture ordering, preferential use of non-bronchoscopic bronchoalveolar lavage for culture collection, and suppression of culture results for samples with minimal alveolar neutrophilia. Rates of adverse safety outcomes, positive respiratory cultures, and antimicrobial utilization were compared between mechanically ventilated patients (MVPs) in the 1-year post-intervention study cohort (2022-2023) and 5-year pre-intervention MVP controls (2017-2022). RESULTS: VAP-DSI implementation did not associate with increases in adverse safety outcomes but did associate with a 20% rate reduction in positive respiratory cultures per 1000 MVP days (pre-intervention rate 127 [95% CI: 122-131], post-intervention rate 102 [95% CI: 92-112], p < 0.01). Significant reductions in broad-spectrum antibiotic days of therapy per 1000 MVP days were noted after VAP-DSI implementation (pre-intervention rate 1199 [95% CI: 1177-1205], post-intervention rate 1149 [95% CI: 1116-1184], p 0.03). DISCUSSION: Implementation of a VAP-DSI was safe and associated with significant reductions in rates of positive respiratory cultures and broad-spectrum antimicrobial use. This innovative trial of a VAP-DSI represents a novel avenue for intensive care unit antimicrobial stewardship. Multicentre trials of VAP-DSIs are warranted.


Asunto(s)
Neumonía Asociada al Ventilador , Humanos , Antibacterianos/uso terapéutico , Unidades de Cuidados Intensivos , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Estudios Prospectivos , Estudios de Factibilidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-38051927

RESUMEN

RATIONALE: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. OBJECTIVES: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis. METHODS: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with idiopathic pulmonary fibrosis in the multicenter CleanUP-IPF trial. Buccal swabs were collected from usual care, and antimicrobial cohorts. Microbiome data was correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan Meier analysis and Cox proportional hazards models. MEASUREMENTS AND MAIN RESULTS: Greater buccal microbial diversity associated with lower forced vital capacity (FVC) at baseline [mean diff -3.60: 95% CI -5.92 to -1.29 percent predicted FVC per 1 unit increment]. The buccal proportion of Streptococcus correlated positively with FVC [mean diff 0.80: 95% CI 0.16-1.43 percent predicted per 10% increase] (n=490). Greater microbial diversity was associated with an increased risk of death [HR 1.73: 95% CI 1.03-2.90] while a greater proportion of Streptococcus was associated with a reduced risk of death [HR 0.85: 95% CI 0.73 to 0.99]. The Streptococcus genus was mainly comprised of Streptococcus mitis species. CONCLUSIONS: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal Streptococcus mitis spp associates with preserved lung function and improved survival.

10.
Nat Med ; 29(11): 2793-2804, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37957375

RESUMEN

Respiratory microbial dysbiosis is associated with acute respiratory distress syndrome (ARDS) and hospital-acquired pneumonia (HAP) in critically ill patients. However, we lack reproducible respiratory microbiome signatures that can increase our understanding of these conditions and potential treatments. Here, we analyze 16S rRNA sequencing data from 2,177 respiratory samples collected from 1,029 critically ill patients (21.7% with ARDS and 26.3% with HAP) and 327 healthy controls, sourced from 17 published studies. After data harmonization and pooling of individual patient data, we identified microbiota signatures associated with ARDS, HAP and prolonged mechanical ventilation. Microbiota signatures for HAP and prolonged mechanical ventilation were characterized by depletion of a core group of microbes typical of healthy respiratory samples, and the ARDS microbiota signature was distinguished by enrichment of potentially pathogenic respiratory microbes, including Pseudomonas and Staphylococcus. Using machine learning models, we identified clinically informative, three- and four-factor signatures that predicted ARDS, HAP and prolonged mechanical ventilation with relatively high accuracy (area under the curve of 0.751, 0.72 and 0.727, respectively). We validated the signatures in an independent prospective cohort of 136 patients on mechanical ventillation and found that patients with microbiome signatures associated with ARDS, HAP or prolonged mechanical ventilation had longer times to successful extubation than patients lacking these signatures (hazard ratios of 1.56 (95% confidence interval (CI) 1.07-2.27), 1.51 (95% CI 1.02-2.23) and 1.50 (95% CI 1.03-2.18), respectively). Thus, we defined and validated robust respiratory microbiome signatures associated with ARDS and HAP that may help to identify promising targets for microbiome therapeutic modulation in critically ill patients.


Asunto(s)
Microbiota , Neumonía , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Estudios Prospectivos , Enfermedad Crítica , ARN Ribosómico 16S/genética , Microbiota/genética , Hospitales
11.
Expert Rev Respir Med ; 17(10): 889-901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872770

RESUMEN

INTRODUCTION: Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED: In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION: The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.


Asunto(s)
Microbiota , Neumonía Asociada al Ventilador , Humanos , Pulmón , Respiración Artificial , Enfermedad Crónica
13.
Ann Am Thorac Soc ; 20(5): 621-631, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37125997

RESUMEN

Bronchoscopy for research purposes is a valuable tool to understand lung-specific biology in human participants. Despite published reports and active research protocols using this procedure in critically ill patients, no recent document encapsulates the important safety considerations and downstream applications of this procedure in this setting. The objectives were to identify safe practices for patient selection and protection of hospital staff, provide recommendations for sample procurement to standardize studies, and give guidance on sample preparation for novel research technologies. Seventeen international experts in the management of critically ill patients, bronchoscopy in clinical and research settings, and experience in patient-oriented clinical or translational research convened for a workshop. Review of relevant literature, expert presentations, and discussion generated the findings presented herein. The committee concludes that research bronchoscopy with bronchoalveolar lavage in critically ill patients on mechanical ventilation is valuable and safe in appropriately selected patients. This report includes recommendations on standardization of this procedure and prioritizes the reporting of sample management to produce more reproducible results between laboratories. This document serves as a resource to the community of researchers who endeavor to include bronchoscopy as part of their research protocols and highlights key considerations for the inclusion and safety of research participants.


Asunto(s)
Broncoscopía , Enfermedad Crítica , Humanos , Lavado Broncoalveolar , Dimercaprol , Selección de Paciente
15.
Ann Am Thorac Soc ; 20(3): 341-353, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36856712

RESUMEN

Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Trasplante de Órganos , Neumonía , Humanos , Huésped Inmunocomprometido , Sociedades
16.
Arch Clin Biomed Res ; 7(1): 45-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938368

RESUMEN

ReadUntil enables Oxford Nanopore Technology's (ONT) sequencers to selectively sequence reads of target species in real-time. This enables efficient microbial enrichment for applications such as microbial abundance estimation and is particularly beneficial for metagenomic samples with a very high fraction of non-target reads (> 99% can be human reads). However, read-until requires a fast and accurate software filter that analyzes a short prefix of a read and determines if it belongs to a microbe of interest (target) or not. The baseline Read Until pipeline uses a deep neural network-based basecaller called Guppy and is slow and inaccurate for this task (~60% of bases sequenced are unclassified). We present RawMap, an efficient CPU-only microbial species-agnostic Read Until classifier for filtering non-target human reads in the squiggle space. RawMap uses a Support Vector Machine (SVM), which is trained to distinguish human from microbe using non-linear and non-stationary characteristics of ONT's squiggle output (continuous electrical signals). Compared to the baseline Read Until pipeline, RawMap is a 1327X faster classifier and significantly improves the sequencing time and cost, and compute time savings. We show that RawMap augmented pipelines reduce sequencing time and cost by ~24% and computing cost by 22%. Additionally, since RawMap is agnostic to microbial species, it can also classify microbial species it is not trained on. We also discuss how RawMap may be used as an alternative to the RT-PCR test for viral load quantification of SARS-CoV-2.

17.
JAMA Netw Open ; 6(2): e230982, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36853606

RESUMEN

Importance: Breath analysis has been explored as a noninvasive means to detect COVID-19. However, the impact of emerging variants of SARS-CoV-2, such as Omicron, on the exhaled breath profile and diagnostic accuracy of breath analysis is unknown. Objective: To evaluate the diagnostic accuracies of breath analysis on detecting patients with COVID-19 when the SARS-CoV-2 Delta and Omicron variants were most prevalent. Design, Setting, and Participants: This diagnostic study included a cohort of patients who had positive and negative test results for COVID-19 using reverse transcriptase polymerase chain reaction between April 2021 and May 2022, which covers the period when the Delta variant was overtaken by Omicron as the major variant. Patients were enrolled through intensive care units and the emergency department at the University of Michigan Health System. Patient breath was analyzed with portable gas chromatography. Main Outcomes and Measures: Different sets of VOC biomarkers were identified that distinguished between COVID-19 (SARS-CoV-2 Delta and Omicron variants) and non-COVID-19 illness. Results: Overall, 205 breath samples from 167 adult patients were analyzed. A total of 77 patients (mean [SD] age, 58.5 [16.1] years; 41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White patients) had COVID-19, and 91 patients (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11 [12.1%] Black and 76 [83.5%] White patients) had non-COVID-19 illness. Several patients were analyzed over multiple days. Among 94 positive samples, 41 samples were from patients in 2021 infected with the Delta or other variants, and 53 samples were from patients in 2022 infected with the Omicron variant, based on the State of Michigan and US Centers for Disease Control and Prevention surveillance data. Four VOC biomarkers were found to distinguish between COVID-19 (Delta and other 2021 variants) and non-COVID-19 illness with an accuracy of 94.7%. However, accuracy dropped substantially to 82.1% when these biomarkers were applied to the Omicron variant. Four new VOC biomarkers were found to distinguish the Omicron variant and non-COVID-19 illness (accuracy, 90.9%). Breath analysis distinguished Omicron from the earlier variants with an accuracy of 91.5% and COVID-19 (all SARS-CoV-2 variants) vs non-COVID-19 illness with 90.2% accuracy. Conclusions and Relevance: The findings of this diagnostic study suggest that breath analysis has promise for COVID-19 detection. However, similar to rapid antigen testing, the emergence of new variants poses diagnostic challenges. The results of this study warrant additional evaluation on how to overcome these challenges to use breath analysis to improve the diagnosis and care of patients.


Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Estados Unidos , Adulto , Humanos , Masculino , Persona de Mediana Edad , Femenino , SARS-CoV-2/genética , COVID-19/diagnóstico , Pruebas Respiratorias
20.
Am J Respir Crit Care Med ; 207(8): 1030-1041, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378114

RESUMEN

Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Sepsis , Animales , Ratones , Temperatura Corporal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...