Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 133(10): 826-841, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883587

RESUMEN

BACKGROUND: Thrombocytopenia has been consistently described in patients with extracorporeal membrane oxygenation (ECMO) and associated with poor outcome. However, the prevalence and underlying mechanisms remain largely unknown, and a device-related role of ECMO in thrombocytopenia has been hypothesized. This study aims to investigate the mechanisms underlying thrombocytopenia in ECMO patients. METHODS: In a prospective cohort of 107 ECMO patients, we investigated platelet count, functions, and glycoprotein shedding. In an ex vivo mock circulatory ECMO loop, we assessed platelet responses and VWF (von Willebrand factor)-GP Ibα (glycoprotein Ibα) interactions at low- and high-flow rates, in the presence or absence of red blood cells. The clearance of human platelets subjected or not to ex vivo perfusion was studied using an in vivo transfusion model in NOD/SCID (nonobese diabetic/severe combined Immunodeficient) mice. RESULTS: In ECMO patients, we observed a time-dependent decrease in platelet count starting 1 hour after device onset, with a mean drop of 7%, 35%, and 41% at 1, 24, and 48 hours post-ECMO initiation (P=0.00013, P<0.0001, and P<0.0001, respectively), regardless of the type of ECMO. This drop in platelet count was associated with a decrease in platelet GP Ibα expression (before: 47.8±9.1 versus 24 hours post-ECMO: 42.3±8.9 mean fluorescence intensity; P=0.002) and an increase in soluble GP Ibα plasma levels (before: 5.6±3.3 versus 24 hours post-ECMO: 10.8±4.1 µg/mL; P<0.0001). GP Ibα shedding was also observed ex vivo and was unaffected by (1) red blood cells, (2) the coagulation potential, (3) an antibody blocking VWF-GP Ibα interaction, (4) an antibody limiting VWF degradation, and (5) supraphysiological VWF plasma concentrations. In contrast, GP Ibα shedding was dependent on rheological conditions, with a 2.8-fold increase at high- versus low-flow rates. Platelets perfused at high-flow rates before being transfused to immunodeficient mice were eliminated faster in vivo with an accelerated clearance of GP Ibα-negative versus GP Ibα-positive platelets. CONCLUSIONS: ECMO-associated shear forces induce GP Ibα shedding and thrombocytopenia due to faster clearance of GP Ibα-negative platelets. Inhibiting GP Ibα shedding could represent an approach to reduce thrombocytopenia during ECMO.


Asunto(s)
Trombocitopenia , Factor de von Willebrand , Humanos , Animales , Ratones , Factor de von Willebrand/metabolismo , Estudios Prospectivos , Ratones Endogámicos NOD , Ratones SCID , Plaquetas/metabolismo , Trombocitopenia/terapia , Trombocitopenia/metabolismo
2.
Cardiovasc Res ; 118(2): 622-637, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576766

RESUMEN

AIMS: Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS: VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvß3 signalling abolished proliferation. However, VWF did not bind to αvß3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvß3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION: VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvß3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.


Asunto(s)
Aterosclerosis/metabolismo , Proliferación Celular , Integrina alfaVbeta3/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de von Willebrand/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Células Cultivadas , Hiperplasia , Integrina alfaVbeta3/genética , Proteínas Relacionadas con Receptor de LDL/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima , Placa Aterosclerótica , Transducción de Señal , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Factor de von Willebrand/genética
3.
Arterioscler Thromb Vasc Biol ; 40(9): 2127-2142, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698684

RESUMEN

OBJECTIVE: Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kß, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS: This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.


Asunto(s)
Afibrinogenemia/sangre , Plaquetas/efectos de los fármacos , Fibrinógeno/metabolismo , Fragmentos Fab de Inmunoglobulinas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Trombosis/tratamiento farmacológico , Afibrinogenemia/diagnóstico , Afibrinogenemia/genética , Plaquetas/metabolismo , Simulación por Computador , Fibrinógeno/genética , Fibrinolíticos/farmacología , Humanos , Cinética , Microscopía por Video , Modelos Biológicos , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Estrés Mecánico , Trombina/metabolismo , Trombosis/sangre , Trombosis/diagnóstico , Trombosis/genética
4.
Platelets ; 29(2): 156-161, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29022492

RESUMEN

A calibrated automated thrombogram (CAT) is performed usually with human platelet-free plasma (PFP) but may be more relevant with platelet-rich plasma (PRP). In this case, platelets are not stimulated by subendothelial molecules like collagen. Our aim was to assess the consequence of strong (collagen) or weak (ADP) induction of platelet release and aggregation on thrombin generation. Platelet aggregation in PRP was triggered with 10 µg/mL collagen or 10 µM ADP using a lumi-aggregometer. Thrombin generation curves were monitored by CAT in different conditions: PRP, PRP with activated platelets (actPRP), aggregated PRP (agPRP), aggregated platelets resuspended in autologous PFP (resPRP), PFP and PFP obtained after aggregation (agPFP). We found a 3-fold shortening of the lag time and time to peak and a marked increase in velocity and thrombin peak without changes in endogenous thrombin potential (ETP) in agPRP with both agonists compared with PRP. The same holds true in agPFP but with a marked increase in ETP compared with PFP. Similar changes in the kinetics of thrombin generation were observed with actPRP-collagen and to a lesser extent in resPRP-collagen compared with PRP. By contrast, there were no modifications of the thrombin generation curves in actPRP-ADP. Alpha-2-macroglobin-thrombin complexes were unchanged in the different PRP conditions but were increased in PFP prepared from agPFP compared to control PFP. Platelet aggregation during activation by agonists other than thrombin did not increase thrombin generation but accelerated its kinetics mainly via platelet content release and platelet-derived extracellular vesicules formation. In diseases characterized by altered platelet granule content or release as well as altered platelet activation, a platelet aggregation step prior to CAT analysis may be clinically relevant to improve laboratory estimation of the bleeding/thrombotic balance.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Agregación Plaquetaria/fisiología , Tromboelastografía/métodos , Trombina/metabolismo , Humanos
5.
Front Physiol ; 8: 949, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213245

RESUMEN

Background: The metabolic syndrome (MetS) and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis. Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs) and its interplay with adipokines, free fatty acids (FFA), and metalloproteinases (MMPs) in obese Zucker rats that share features of the human MetS. Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT). Results: Endogenous thrombin potential (ETP) was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL)-1ß and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats. Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1) increased fibrinogen and impaired fibrinolysis and (2) increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...