Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(27): eadn9423, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968349

RESUMEN

DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.


Asunto(s)
Núcleo Celular , ADN , Nanoestructuras , Núcleo Celular/metabolismo , Humanos , ADN/química , ADN/metabolismo , Nanoestructuras/química , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Nanotubos/química
2.
Anal Chem ; 96(31): 12784-12793, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39066698

RESUMEN

The viscosity that ensures the controlled diffusion of biomolecules in cells is a crucial biophysical parameter. Consequently, fluorescent probes capable of reporting viscosity variations are valuable tools in bioimaging. In this field, red-shifted probes are essential, as the widely used and gold standard probe remains green-emitting molecular rotors based on BODIPY. Here, we demonstrate that pyrrolyl squaraines, red-emissive fluorophores, exhibit high sensitivity over a wide viscosity range from 30 to 4890 mPa·s. Upon alkylation of the pyrrole moieties, the probes improve their sensitivity to viscosity through an enhanced twisted intramolecular charge transfer phenomenon. We utilized this scaffold to develop a plasma membrane probe, pSQ-PM, that efficiently stains the plasma membrane in a fluorogenic manner. Using fluorescence lifetime imaging, pSQ-PM enabled efficient sensing of viscosity variations in the plasma membrane under various conditions and in different cell lines (HeLa, U2OS, and NIH/3T3). Moreover, upon incubation, pSQ-PM stained the membrane of intracellular vesicles and suggested that the lysosomal membranes displayed enhanced fluidity.


Asunto(s)
Membrana Celular , Ciclobutanos , Colorantes Fluorescentes , Imagen Óptica , Fenoles , Pirroles , Membrana Celular/química , Membrana Celular/metabolismo , Viscosidad , Colorantes Fluorescentes/química , Ratones , Animales , Humanos , Ciclobutanos/química , Pirroles/química , Fenoles/química , Células 3T3 NIH , Células HeLa , Estructura Molecular
3.
J Mol Biol ; 436(16): 168639, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838849

RESUMEN

HIV-1 Gag polyprotein plays a pivotal role in assembly and budding of new particles, by specifically packaging two copies of viral gRNA in the host cell cytoplasm and selecting the cell plasma membrane for budding. Both gRNA and membrane selections are thought to be mediated by the compact form of Gag. This compact form binds to gRNA through both its matrix (MA) and nucleocapsid (NC) domains in the cytoplasm. At the plasma membrane, the membrane competes with gRNA for Gag binding, resulting in a transition to the extended form of Gag found in immature particles with MA bound to membrane lipids and NC to gRNA. The Gag compact form was previously evidenced in vitro. Here, we demonstrated the compact form of Gag in cells by confocal microscopy, using a bimolecular fluorescence complementation approach with a split-GFP bipartite system. Using wild-type Gag and Gag mutants, we showed that the compact form is highly dependent on the binding of MA and NC domains to RNA, as well as on interactions between MA and CA domains. In contrast, Gag multimerization appears to be less critical for the accumulation of the compact form. Finally, mutations altering the formation of Gag compact form led to a strong reduction in viral particle production and infectivity, revealing its key role in the production of infectious viral particles.


Asunto(s)
VIH-1 , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , VIH-1/metabolismo , VIH-1/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Ensamble de Virus/genética , Humanos , Virión/metabolismo , Virión/genética , Unión Proteica , ARN Viral/metabolismo , ARN Viral/genética , Membrana Celular/metabolismo , Membrana Celular/virología
4.
Nanoscale ; 16(24): 11550-11563, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38868990

RESUMEN

Efficient exciton transport is the essential property of natural and synthetic light-harvesting (LH) devices. Here we investigate exciton transport properties in LH organic polymer nanoparticles (ONPs) of 40 nm diameter. The ONPs are loaded with a rhodamine B dye derivative and bulky counterion, enabling dye loadings as high as 0.3 M, while preserving fluorescence quantum yields larger than 30%. We use time-resolved fluorescence spectroscopy to monitor exciton-exciton annihilation (EEA) kinetics within the ONPs dispersed in water. We demonstrate that unlike the common practice for photoluminescence investigations of EEA, the non-uniform intensity profile of the excitation light pulse must be taken into account to analyse reliably intensity-dependent population dynamics. Alternatively, a simple confocal detection scheme is demonstrated, which enables (i) retrieving the correct value for the bimolecular EEA rate which would otherwise be underestimated by a typical factor of three, and (ii) revealing minor EEA by-products otherwise unnoticed. Considering the ONPs as homogeneous rigid solutions of weakly interacting dyes, we postulate an incoherent exciton hoping mechanism to infer a diffusion constant exceeding 0.003 cm2 s-1 and a diffusion length as large as 70 nm. This work demonstrates the success of the present ONP design strategy at engineering efficient exciton transport in disordered multichromophoric systems.

5.
J Am Chem Soc ; 146(25): 17456-17473, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861358

RESUMEN

Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, etc.) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.


Asunto(s)
Compuestos de Boro , Compuestos de Boro/química , Compuestos de Boro/farmacología , Fotoquímica/métodos , Oxidación-Reducción , Supervivencia Celular/efectos de los fármacos , Humanos , Células HeLa , Neuronas/citología , Neuronas/efectos de los fármacos
6.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260628

RESUMEN

DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.

7.
Nat Commun ; 14(1): 7353, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990014

RESUMEN

Although the human immunodeficiency virus type 1 lipid envelope has been reported to be enriched with host cell sphingomyelin and cholesterol, the molecular mechanism of the enrichment is not well understood. Viral Gag protein plays a central role in virus budding. Here, we report the interaction between Gag and host cell lipids using different quantitative and super-resolution microscopy techniques in combination with specific probes that bind endogenous sphingomyelin and cholesterol. Our results indicate that Gag in the inner leaflet of the plasma membrane colocalizes with the outer leaflet sphingomyelin-rich domains and cholesterol-rich domains, enlarges sphingomyelin-rich domains, and strongly restricts the mobility of sphingomyelin-rich domains. Moreover, Gag multimerization induces sphingomyelin-rich and cholesterol-rich lipid domains to be in close proximity in a curvature-dependent manner. Our study suggests that Gag binds, coalesces, and reorganizes pre-existing lipid domains during assembly.


Asunto(s)
VIH-1 , Humanos , VIH-1/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismo , Productos del Gen gag/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/metabolismo
8.
J Virol ; 97(9): e0004023, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37695057

RESUMEN

The human immunodeficiency virus-1 (HIV-1) nucleocapsid protein (NCp7) is a nucleic acid chaperone protein with two highly conserved zinc fingers. To exert its key roles in the viral cycle, NCp7 interacts with several host proteins. Among them, the human NoL12 protein (hNoL12) was previously identified in genome wide screens as a potential partner of NCp7. hNoL12 is a highly conserved 25 kDa nucleolar RNA-binding protein implicated in the 5'end processing of ribosomal RNA in the nucleolus and thus in the assembly and maturation of ribosomes. In this work, we confirmed the NCp7/hNoL12 interaction in cells by Förster resonance energy transfer visualized by Fluorescence Lifetime Imaging Microscopy and co-immunoprecipitation. The interaction between NCp7 and hNoL12 was found to strongly depend on their both binding to RNA, as shown by the loss of interaction when the cell lysates were pretreated with RNase. Deletion mutants of hNoL12 were tested for their co-immunoprecipitation with NCp7, leading to the identification of the exonuclease domain of hNoL12 as the binding domain for NCp7. Finally, the interaction with hNoL12 was found to be specific of the mature NCp7 and to require NCp7 basic residues. IMPORTANCE HIV-1 mature nucleocapsid (NCp7) results from the maturation of the Gag precursor in the viral particle and is thus mostly abundant in the first phase of the infection which ends with the genomic viral DNA integration in the cell genome. Most if not all the nucleocapsid partners identified so far are not specific of the mature form. We described here the specific interaction in the nucleolus between NCp7 and the human nucleolar protein 12, a protein implicated in ribosomal RNA maturation and DNA damage response. This interaction takes place in the cell nucleolus, a subcellular compartment where NCp7 accumulates. The absence of binding between hNoL12 and Gag makes hNoL12 one of the few known specific cellular partners of NCp7.


Asunto(s)
VIH-1 , Proteínas Nucleares , Proteínas de la Nucleocápside , Proteínas de Unión al ARN , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Humanos , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , VIH-1/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Dedos de Zinc , Transferencia Resonante de Energía de Fluorescencia , Unión Proteica , Inmunoprecipitación
9.
Adv Mater ; 35(29): e2301402, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37073109

RESUMEN

Förster resonance energy transfer (FRET) is essential in optical materials for light-harvesting, photovoltaics, and biosensing, but its operating range is fundamentally limited by the Förster radius of ≈5 nm. In this work, FRET between fluorescent organic nanoparticles (NPs) is studied in order to break this limit. The donor and acceptor NPs are built from charged hydrophobic polymers loaded with cationic dyes and bulky hydrophobic counterions. Their surface is functionalized with DNA in order to control surface-to-surface distance. It is found that the FRET efficiency does not follow the canonic Förster law, reaching 0.70 and 0.45 values for NP-NP distances of 15 and 20 nm, respectively. This corresponds to the FRET efficiency decay as power four of the surface-to-surface NP-NP distance. Based on this long-distance FRET, a DNA nanoprobe is developed, where a target DNA fragment, encoding the cancer marker survivin, bringing together donor and acceptor NPs at ≈15 nm distance. In this nanoprobe, a single-molecular recognition results in unprecedented color switch for >5000 dyes, yielding a simple and fast assay with 18 attomoles limit of detection. Breaking the Förster distance limit for ultrabright NPs opens the route to advanced optical nanomaterials for amplified FRET-based biosensing.


Asunto(s)
Nanopartículas , Transferencia Resonante de Energía de Fluorescencia , Nanopartículas/química , ADN/química , Colorantes Fluorescentes/química
10.
Chemistry ; 29(20): e202300685, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36919917

RESUMEN

Invited for the cover of this issue is the group of Mayeul Collot at the University of Strasbourg (CNRS). The image depicts the effect of simple chemical tuning on coumarin dyes to tune and improve the DPIC photoconversion mechanism. Read the full text of the article at 10.1002/chem.202203933.

11.
Chembiochem ; 24(12): e202300139, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36820499

RESUMEN

Photodynamic therapy (PDT) is a photochemistry-based medical treatment combining light at a specific wavelength and a photosensitizer (PS) in the presence of oxygen. Application of PDT as a conventional treatment is limited and clearly the approval in clinics of new PS is challenging. The selective accumulation of the PS in the targeted malignant cells is of paramount importance to reduce the side effects that are typical of the current worldwide approved PS. Here we report a new series of aniline- and iodine-substituted BODIPY derivatives (1-3) as promising lysosome-targeting and pH-responsive theranostic PS, which displayed a significant in vitro light-induced cytotoxicity, efficient imaging properties and low dark toxicity (for 2 and 3). These compounds were obtained in few reproducible synthetic steps and good yields. Spectroscopic and electrochemical measurements along with computational calculations confirmed the quenching of the emissive properties of the PS, while both fluorescence and 1 O2 emission were obtained only under acidic conditions inducing amine protonation. The pKa values and pH-dependent emissive properties of 1-3 being established, their cellular uptake and activation in the lysosomal vesicles (pH≈4-5) were confirmed by their co-localization with the commercial LysoTracker deep red and light-induced cytotoxicity (IC50 between 0.16 and 0.06 µM) against HeLa cancer cells.


Asunto(s)
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Lisosomas , Concentración de Iones de Hidrógeno
12.
Chemistry ; 29(20): e202203933, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36719328

RESUMEN

Dual-emissive photoconvertible fluorophores (DPCFs) are powerful tools to unambiguously track labeled cells in bioimaging. We recently introduced a new rational mechanism called directed photooxidation-induced conversion (DPIC) enabling efficient DPCFs to be obtained by conjugating a coumarin to aromatic singlet-oxygen reactive moieties (ASORMs). Pyrrole was found to be a suitable ASORM as it provided a high hypsochromic shift along with a fast and efficient conversion. By synthesizing various pyrrole-based styryl coumarin dyes, we showed that the photoconversion properties, including the quantum yield of photoconversion and the chemical yield of conversion can be tuned by chemical modification of the pyrrole. These modifications led to an improved dual emissive converter, SCP-Boc, which displayed a high brightness and an enhanced photoconversion yield of 63 %. SCP-Boc was successfully used to sequentially photoconvert cells by laser scanning confocal microscopy.

13.
Angew Chem Int Ed Engl ; 62(4): e202215085, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36420823

RESUMEN

We herein present a new concept to produce dual-color photoconvertible probes based on a mechanism called Directed Photooxidation Induced Conversion (DPIC). As a support of this mechanism, styryl-coumarins (SCs) bearing Aromatic Singlet Oxygen Reactive Moieties (ASORMs) like furan and pyrrole have been synthesized. SCs are bright fluorophores, which undergo a hypsochromic conversion upon visible light irradiation due to directed photooxidation of the ASORM that leads to the disruption of conjugation. SC-P, a yellow emitting probe bearing a pyrrole moiety, converts to a stable blue emitting coumarin with a 68 nm shift allowing the photoconversion and tracking of lipid droplet in live cells. This new approach might pave the way to a new generation of photoconvertible dyes for advanced bioimaging applications.


Asunto(s)
Colorantes Fluorescentes , Luz , Procesos Fotoquímicos , Cumarinas
14.
Viruses ; 14(8)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36016420

RESUMEN

The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) as a mature protein or as a domain of the Gag precursor plays important roles in the early and late phases of the infection. To better understand its roles, we searched for new cellular partners and identified the RNA-binding protein Unr/CSDE1, Upstream of N-ras, whose interaction with Gag and NCp7 was confirmed by co-immunoprecipitation and FRET-FLIM. Unr interaction with Gag was found to be RNA-dependent and mediated by its NC domain. Using a dual luciferase assay, Unr was shown to act as an ITAF (IRES trans-acting factor), increasing the HIV-1 IRES-dependent translation. Point mutations of the HIV-1 IRES in a consensus Unr binding motif were found to alter both the IRES activity and its activation by Unr, suggesting a strong dependence of the IRES on Unr. Interestingly, Unr stimulatory effect is counteracted by NCp7, while Gag increases the Unr-promoted IRES activity, suggesting a differential Unr effect on the early and late phases of viral infection. Finally, knockdown of Unr in HeLa cells leads to a decrease in infection by a non-replicative lentivector, proving its functional implication in the early phase of viral infection.


Asunto(s)
VIH-1 , Proteínas de Unión al ADN/metabolismo , Genes ras , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Proteínas de Unión al ARN/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Int J Biol Macromol ; 213: 210-225, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35643159

RESUMEN

Time-resolved fluorescence anisotropy (TRFA) provides key information on the dynamics of biomolecules and their interaction with ligands. However, since natural nucleosides are almost non-fluorescent, its application to DNA duplexes (dsDNA) requires fluorescent labels, which can alter dsDNA stability, hinder protein binding, and complicate interpretation of TRFA experiments due to their local motion. As shown here, thienoguanosine (thG), a fluorescent analogue of guanosine, overcomes all these limitations. We recorded the TRFA decays of thG-labelled dsDNA of different lengths. thG behaved as a rigid, non-perturbing reporter, since no fast correlation time was recorded for any tested dsDNA. Due to its perfect stacking, only two correlation times, instead of the typical three, describe thG-labelled dsDNA rotational dynamics. Thanks to these features, we provided a complete description of the tumbling of the different dsDNA and their complexes with the Set and Ring Associated (SRA) domain of UHRF1, a key epigenetic regulator, obtaining values in excellent agreement with theoretical predictions. Moreover, thG was also found sensitive to SRA-induced base flipping of neighboring nucleobases. In the DNA label toolbox, thG thus stands out as a unique reporter for investigating the rotational dynamics of dsDNA and protein/dsDNA complexes.


Asunto(s)
ADN , Guanosina , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN/química , Polarización de Fluorescencia , Guanosina/análogos & derivados , Ubiquitina-Proteína Ligasas/metabolismo
16.
Methods Appl Fluoresc ; 10(3)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472854

RESUMEN

Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5' flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3' by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3' flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ∼350 nm and ∼310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pureππ* excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3' flanking C residue was replaced by an A residue in the free duplex, or when its 5' flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.


Asunto(s)
ADN , Guanosina , ADN/química , Guanosina/análogos & derivados , Espectrometría de Fluorescencia
17.
Phys Chem Chem Phys ; 24(3): 1787-1794, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985481

RESUMEN

Exciton density dynamics recorded in time-resolved spectroscopic measurements is a useful tool to recover information on energy transfer (ET) processes that can occur at different timescales, up to the ultrafast regime. Macroscopic models of exciton density decays, involving both direct Förster-like ET and diffusion mechanisms for exciton-exciton annihilation, are largely used to fit time-resolved experimental data but generally neglect contributions from molecular aggregates that can work as quenching species. In this work, we introduce a macroscopic model that includes contributions from molecular aggregate quenchers in a disordered molecular system. As an exemplifying case, we considered a homogenous distribution of rhodamine B dyes embedded in organic nanoparticles to set the initial parameters of the proposed model. The influence of such model parameters is systematically analysed, showing that the presence of molecular aggregate quenchers can be monitored by evaluating the exciton density long time decays. We showed that the proposed model can be applied to molecular systems with ultrafast decays, and we anticipated that it could be used in future studies for global fitting of experimental data with potential support from first-principles simulations.

18.
Int J Pharm ; 614: 121423, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34958896

RESUMEN

Inhaled transfection particles have to penetrate the mucus layer lining the airways to successfully deliver their therapeutic nucleic acid payload to target cells in the underlying epithelium. However, the in vitro models used for evaluating gene carrier efficiency often disregard this viscous defensive barrier. In this study, the two mucus-secreting cell lines NCI-H292 and Calu-3 were selected to develop a series of epithelial models displaying gradual mucus production. In NCI-H292 models, a gradual increase in the MUC5AC mucin was obtained after cell exposure to inducers. In Calu-3 models, MUC5AC production increased as a function of culture duration (3, 7, 14 days) at the air-liquid interface (ALI). Six DOPC-derived cationic lipids were designed and their pDNA delivery activity was evaluated to validate these cellular models. The strongest impairment of the lipid delivery activity was observed in the Calu-3 14-d ALI model. The MUC5AC production in this model was the greatest and the mucus layer was 20 µm thick. The mucus exhibited a solid viscoelastic behavior, and represented a major hindrance to lipoplex diffusion. The Calu-3 14-d ALI model will be highly useful for accurate evaluation of gene carriers intended for airway administration and characterization of their interactions with the mucus.


Asunto(s)
Moco , Mucosa Respiratoria , Células Epiteliales , Técnicas de Transferencia de Gen , Pulmón
19.
Nucleic Acids Res ; 49(19): e111, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34450653

RESUMEN

Interconversions between nucleic acid structures play an important role in transcriptional and translational regulation and also in repair and recombination. These interconversions are frequently promoted by nucleic acid chaperone proteins. To monitor their kinetics, Förster resonance energy transfer (FRET) is widely exploited using ensemble fluorescence intensity measurements in pre-steady-state stopped-flow experiments. Such experiments only provide a weighted average of the emission of all species in solution and consume large quantities of materials. Herein, we lift these limitations by combining time-resolved fluorescence (TRF) with droplet microfluidics (DmF). We validate the innovative TRF-DmF approach by investigating the well characterized annealing of the HIV-1 (+)/(-) Primer Binding Sequences (PBS) promoted by a HIV-1 nucleocapsid peptide. Upon rapid mixing of the FRET-labelled (-)PBS with its complementary (+)PBS sequence inside microdroplets, the TRF-DmF set-up enables resolving the time evolution of sub-populations of reacting species and reveals an early intermediate with a ∼50 ps donor fluorescence lifetime never identified so far. TRF-DmF also favorably compares with single molecule experiments, as it offers an accurate control of concentrations with no upper limit, no need to graft one partner on a surface and no photobleaching issues.


Asunto(s)
Cartilla de ADN/química , VIH-1/química , Chaperonas Moleculares/química , Proteínas de la Nucleocápside/química , Péptidos/química , Albúmina Sérica Humana/química , Emparejamiento Base , Cartilla de ADN/metabolismo , Fluoresceínas/química , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , VIH-1/metabolismo , Humanos , Cinética , Técnicas Analíticas Microfluídicas , Chaperonas Moleculares/metabolismo , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Péptidos/metabolismo , Albúmina Sérica Humana/metabolismo , p-Dimetilaminoazobenceno/análogos & derivados , p-Dimetilaminoazobenceno/química
20.
Cancers (Basel) ; 13(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282773

RESUMEN

Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA