Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 71(4): 783-792, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31207266

RESUMEN

BACKGROUND & AIMS: T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS: Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS: T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION: Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY: Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.


Asunto(s)
Ácidos y Sales Biliares , Colangitis , Interferón gamma/inmunología , Linfocitos T , Factor de Necrosis Tumoral alfa/inmunología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas/inmunología , Colangitis/inmunología , Colangitis/metabolismo , Colangitis/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Serpinas/genética , Linfocitos T/metabolismo , Linfocitos T/patología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
2.
Mol Cancer Res ; 16(3): 496-507, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29330294

RESUMEN

Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative in vitro and in vivo model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. In vivo growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor.Implications: High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. Mol Cancer Res; 16(3); 496-507. ©2018 AACR.


Asunto(s)
Modelos Animales de Enfermedad , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Genotipaje/métodos , Xenoinjertos , Humanos , Masculino , Ratones , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
3.
Sci Rep ; 7(1): 4752, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684848

RESUMEN

Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.


Asunto(s)
Biomarcadores de Tumor/sangre , Técnicas Biosensibles , Nanopartículas/química , Nanotubos/química , Corona de Proteínas/análisis , Receptor ErbB-2/sangre , Anticuerpos/química , Biomarcadores de Tumor/genética , Diseño de Equipo , Humanos , Inmunoensayo , Límite de Detección , Sistemas de Atención de Punto , Receptor ErbB-2/genética , Estándares de Referencia , Saliva/química
4.
Oncotarget ; 8(70): 115582-115595, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383183

RESUMEN

We recently introduced red-green-blue (RGB) marking for clonal cell tracking based on individual color-coding. Here, we applied RGB marking to study clonal development of liver tumors. Immortalized, non-tumorigenic human fetal hepatocytes expressing the human telomerase reverse transcriptase (FH-hTERT) were RGB-marked by simultaneous transduction with lentiviral vectors encoding mCherry, Venus, and Cerulean. Multi-color fluorescence microscopy was used to analyze growth characteristics of RGB-marked FH-hTERT in vitro and in vivo after transplantation into livers of immunodeficient mice with endogenous liver damage (uPA/SCID). After initially polyclonal engraftment we observed oligoclonal regenerative nodules derived from transplanted RGB-marked FH-hTERT. Some mice developed monochromatic invasive liver tumors; their clonal origin was confirmed both on the molecular level, based on specific lentiviral-vector insertion sites, and by serial transplantation of one tumor. Vector insertions in proximity to the proto-oncogene MCF2 and the transcription factor MITF resulted in strong upregulation of mRNA expression in the respective tumors. Notably, upregulated MCF2 and MITF expression was also observed in 21% and 33% of 24 human hepatocellular carcinomas analyzed. In conclusion, liver repopulation with RGB-marked FH-hTERT is a useful tool to study clonal progression of liver tumors caused by insertional mutagenesis in vivo and will help identifying genes involved in liver cancer.

5.
Sensors (Basel) ; 16(6)2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27275824

RESUMEN

The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.


Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles/métodos , Patología Molecular/métodos , Humanos , Campos Magnéticos , Magnetismo
6.
ACS Appl Mater Interfaces ; 8(14): 8893-9, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27023370

RESUMEN

Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.


Asunto(s)
Anticuerpos Inmovilizados/química , Nanotubos/química , Receptor ErbB-2/metabolismo , Trastuzumab/química , Anticuerpos Inmovilizados/metabolismo , Humanos , Magnetismo , Modelos Moleculares , Tamaño de la Partícula , Unión Proteica , Mapas de Interacción de Proteínas/genética , Receptor ErbB-2/química , Trastuzumab/uso terapéutico
7.
Small ; 10(2): 407-11, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23913721

RESUMEN

The feasibility of a recently introduced homogeneous immunodiagnostic approach to directly detect analyte binding by optical observation of the hydrodynamic properties of magnetically rotated nanorods ("PlasMag") is demonstrated experimentally. Specifically, it is shown that the phase lag of the long axis of nickel nanorods (magnetic core parameters: length 182 nm, diameter 26 nm) with respect to externally applied rotating magnetic fields significantly increases on the adhesion of bovine serum albumin (BSA) protein to their surfaces. To validate these results, the amount of bound protein molecules is independently determined by analysis of the electrophoretic mobility of the nanorods. Furthermore, the data also demonstrate the applicability of recently developed empirical models based on numerical solutions of the Fokker-Planck equation for describing the dynamics of magnetic nanoparticles in rotating magnetic fields.


Asunto(s)
Nanotubos , Níquel/química , Albúmina Sérica Bovina/análisis , Magnetismo , Microscopía Electrónica de Transmisión , Soluciones
8.
Nanoscale ; 5(23): 11447-55, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24056778

RESUMEN

Uniformly sized and shaped iron oxide nanoparticles with a mean size of 25 nm were synthesized via decomposition of iron-oleate. High resolution transmission electron microscopy and Mössbauer spectroscopy investigations revealed that the particles are spheres primarily composed of Fe3O4 with a small fraction of FeO. From Mössbauer and static magnetization measurements, it was deduced that the particles are superparamagnetic at room temperature. The hydrophobic particles were successfully transferred into water via PEGylation using nitrodopamine as an anchoring group. IR spectroscopy and thermogravimetric analysis showed the success and efficiency of the phase transfer reaction. After PEGylation, the particles retained monodispersity and their magnetic core remained intact as proven by photon cross-correlation spectroscopy, ac susceptibility, and transmission electron microscopy. The particle aqueous suspensions revealed excellent water stability over a month of monitoring and also against temperature up to 40 °C. The particles exhibited a moderate cytotoxic effect on in vitro cultured bone marrow-derived macrophages and no release of inflammatory or anti-inflammatory cytokines. The PEGylated particles were functionalized with Herceptin antibodies via a conjugation chemistry, their response to a rotating magnetic field was studied using a fluxgate-based setup and was compared with the one recorded for hydrophobic and PEGylated particles. The particle phase lag rose after labeling with Herceptin, indicating the successful conjugation of Herceptin antibodies to the particles.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Polietilenglicoles/química , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/inmunología , Bioensayo , Citocinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/toxicidad , Ácido Oléico/química , Receptor ErbB-2/análisis , Receptor ErbB-2/inmunología , Temperatura , Trastuzumab , Agua/química
9.
ACS Nano ; 6(1): 791-801, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22148365

RESUMEN

We present a new approach for homogeneous real-time immunodiagnostics (denoted as "PlasMag") that can be directly carried out in sample solutions such as serum, thus promising to circumvent the need of sample preparation. It relies on highly sensitive plasmon-optical detection of the relaxation dynamics of magnetic nanoparticles immersed in the sample solution, which changes when target molecules bind to the surfaces of the nanoparticles due to the increase in their hydrodynamic radii. This method requires hybrid nanoparticles that combine both magnetic and optical anisotropic properties. Our model calculations show that core-shell nanorods with a cobalt core diameter of 6 nm, a cobalt core length of 80 nm, and a gold shell thickness of 5 nm are ideally suited as nanoprobes. On the one hand, the spectral position of the longitudinal plasmon resonance of such nanoprobes lies in the near-infrared, where the optical absorption in serum is minimal. On the other hand, the expected change in their relaxation properties on analyte binding is maximal for rotating magnetic fields as excitation in the lower kHz regime. In order to achieve high alignment ratios of the nanoprobes, the strength of the magnetic field should be around 5 mT. While realistic distributions of the nanoprobe properties result in a decrease of their mean optical extinction, the actual relaxation signal change on analyte binding is largely unaffected. These model calculations are supported by measurements on plain cobalt nanorod dispersions, which are the base component of the aspired core-shell nanoprobes currently under development.


Asunto(s)
Técnicas Biosensibles/instrumentación , Inmunoensayo/instrumentación , Separación Inmunomagnética/instrumentación , Nanopartículas de Magnetita/química , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA