Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2292, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280906

RESUMEN

Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.


Asunto(s)
Glomerulonefritis , Podocitos , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glomerulonefritis/patología , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Receptores Toll-Like/metabolismo
2.
Hum Mol Genet ; 32(22): 3153-3165, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37565816

RESUMEN

Mutations in genes encoding nuclear pore proteins (NUPs) lead to the development of steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). However, the precise molecular mechanisms by which NUP dysfunction contributes to podocyte injury preceding FSGS remain unclear. The tightly regulated activity of Yes-associated protein (YAP) and WW-domain-containing transcription regulator 1 (TAZ), the transcriptional effectors of the Hippo pathway, is crucial for podocytes and the maintenance of the glomerular filter. In this study, we investigate the impact of NUPs on the regulation of YAP/TAZ nuclear import and activity in podocytes. In unbiased interactome studies using quantitative label-free mass spectrometry, we identify the FSGS disease gene products NUP107, NUP133, NUP205, and Exportin-5 (XPO5) as components of YAP and TAZ protein complexes in podocytes. Moreover, we demonstrate that NUP205 is essential for YAP/TAZ nuclear import. Consistently, both the nuclear interaction of YAP/TAZ with TEA domain transcription factor 1 and their transcriptional activity were dependent on NUP205 expression. Additionally, we elucidate a regulatory feedback mechanism whereby YAP activity is modulated in response to TAZ-mediated NUP205 expression. In conclusion, this study establishes a connection between the FSGS disease protein NUP205 and the activity of the transcriptional regulators and Hippo effectors YAP and TAZ and it proposes a potential pathological role of YAP/TAZ dysregulation in podocytes of patients with pathogenic NUP205 variants.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Proteínas de Complejo Poro Nuclear , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Fosfoproteínas/genética , ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
3.
J Am Soc Nephrol ; 34(8): 1366-1380, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367205

RESUMEN

SIGNIFICANCE STATEMENT: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease. BACKGROUND: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated. METHODS: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo . RESULTS: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion. CONCLUSIONS: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Nefritis , Ratones , Humanos , Animales , Proteínas de Punto de Control Inmunitario , Glomerulonefritis/patología , Glomerulonefritis Membranoproliferativa/complicaciones , Inflamación/complicaciones , Ratones Endogámicos C57BL
4.
Dtsch Med Wochenschr ; 147(6): 332-336, 2022 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-35291039

RESUMEN

Advances in basic and clinical research have improved our understanding of the pathomechanisms underlying nephrotic syndrome caused by minimal change disease (MCD) and focal and segmental glomerulosclerosis (FSGS). These advances are reflected in the new 2021 KDIGO-Guidelines, which emphasize the clear distinction between primary, secondary and genetic causes. Proper classification is critical, as it directly affects the therapy of choice. While glucocorticoids still play a central in inducing remission in primary forms, calcineurin inhibitors, mycophenolate mofetil, cyclophosphamide and rituximab (off label) are viable adjuncts/alternatives to reduce or replace glucocorticoids in case of side effects or contraindications. Since SGLT-2-inhibitors have shown renoprotective effects in non-diabetic patients and may help to reduce proteinuria, they should be considered in all (adult) patients with chronic kidney disease, including MCD and FSGS patients. In the near future, Sparsentan, an endothelin type A and angiotensin receptor blocker may be added to the growing arsenal of proteinuria-reducing agents, with a phase 3 trail expected to be completed in late 2022. Finally, we recommend the inclusion of all MCD/FSGS patients in clinical registries (e. g. FOrMe Registry in Germany) to ensure adequate therapy and genetic testing if indicated. In addition, national registries are an invaluable source of clinical data that helps to refine our therapies towards individualized medicine.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Adulto , Femenino , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Humanos , Masculino , Nefrosis Lipoidea/complicaciones , Nefrosis Lipoidea/tratamiento farmacológico , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/tratamiento farmacológico , Proteinuria
5.
J Am Soc Nephrol ; 33(1): 138-154, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853150

RESUMEN

BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.


Asunto(s)
Albuminuria/genética , Predisposición Genética a la Enfermedad/genética , Barrera de Filtración Glomerular/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Renales/genética , Proteínas de la Membrana/genética , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/patología
6.
Mol Cell Pediatr ; 8(1): 18, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792685

RESUMEN

Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.

7.
J Am Soc Nephrol ; 29(7): 1825-1837, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29866800

RESUMEN

Background Th17 cells are central pathogenic mediators of autoimmune disease, including many forms of GN. IL-10 receptor signaling (IL-10R) in regulatory T cells (Tregs) has been implicated in the downregulation of Th17 cells, but the underlying molecular mechanisms and functional relevance of this process remain unclear.Methods We generated mice with Treg-specific IL-10Ra deficiency and subjected these mice to nephrotoxic serum-induced nephritis as a model of crescentic GN. Immune responses and Treg phenotypes were extensively analyzed.Results Compared with controls, mice with IL-10Ra-/- Tregs showed a spontaneously overshooting Th17 immune response. This hyper-Th17 phenotype was further boosted during GN and associated with aggravated renal injury. Notably, abrogation of IL-10Ra signaling in Tregs increased dendritic cell activation and production of Th17-inducing cytokines. In contrast, Treg trafficking and expression of chemokine receptor CCR6 remained unaffected, indicating mechanisms of Th17 control, differing from those of previously identified CCR6+ Treg17 cells. Indeed, the capacity for direct in vitro suppression of Th17 responses by IL-10Ra-/- Tregs was significantly impaired. As underlying pathology, analyses conducted in vitro and in vivo using double-fluorescent reporter mice revealed strikingly decreased IL-10 production by IL-10Ra-/- Tregs. To assess, whether reduced IL-10 could explain the hyper Th17 phenotype, competitive cotransfer experiments were performed. Supporting our concept, IL-10Ra-/- T cells differentiated into Th17 cells at much higher frequencies than wild type T cells did during GN.Conclusions IL-10R engagement optimizes Treg-mediated suppression of Th17 immunity. We hypothesize a feed-forward loop, in which IL-10Ra signaling reinforces IL-10 secretion by Tregs which potently controls Th17 development via direct and indirect mechanisms. IL-10R thus may be a promising therapeutic target for the treatment of GN.


Asunto(s)
Glomerulonefritis/inmunología , Subunidad alfa del Receptor de Interleucina-10/metabolismo , Interleucina-10/metabolismo , Nefritis/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología , Animales , Diferenciación Celular , Citocinas/metabolismo , Células Dendríticas/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Subunidad alfa del Receptor de Interleucina-10/genética , Masculino , Ratones , Ratones Noqueados , Nefritis/inmunología , Receptores CCR6/metabolismo , Células Th17/metabolismo
8.
J Am Soc Nephrol ; 28(1): 185-196, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27297951

RESUMEN

Th1 cells are central pathogenic mediators of crescentic GN (cGN). Mechanisms responsible for Th1 cell downregulation, however, remain widely unknown. Recently, it was proposed that activation of the Th1-characteristic transcription factor T-bet optimizes Foxp3+ regulatory T (Treg) cells to counteract Th1-type inflammation. Because very little is known about the role of T-bet+ Treg1 cells in inflammatory diseases, we studied the function of these cells in the nephrotoxic nephritis (NTN) model of cGN. The percentage of Treg1 cells progressively increased in kidneys of nephritic wild-type mice during the course of NTN, indicating their functional importance. Notably, naïve Foxp3CrexT-betfl/fl mice, lacking Treg1 cells, showed spontaneous skewing toward Th1 immunity. Furthermore, absence of Treg1 cells resulted in aggravated NTN with selectively dysregulated renal and systemic Th1 responses. Detailed analyses of Treg cells from Foxp3CrexT-betfl/fl mice revealed unaltered cytokine production and suppressive capacity. However, in competitive cotransfer experiments, wild-type Treg cells outcompeted T-bet-deficient Treg cells in terms of population expansion and expression levels of Foxp3, indicating that T-bet expression is crucial for general Treg fitness. Additionally, T-bet-deficient Treg cells lacked expression of the Th1-characteristic trafficking receptor CXCR3, which correlated with significant impairment of renal Treg infiltration. In summary, our data indicate a new subtype of Treg cells in cGN. These Treg1 cells are characterized by activation of the transcription factor T-bet, which enhances the overall fitness of these cells and optimizes their capacity to downregulate Th1 responses by inducing chemokine receptor CXCR3 expression.


Asunto(s)
Glomerulonefritis/inmunología , Proteínas de Dominio T Box/fisiología , Linfocitos T Reguladores/fisiología , Células TH1/fisiología , Animales , Masculino , Ratones , Receptores CXCR3/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...