Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659900

RESUMEN

The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.

2.
BMC Biol ; 22(1): 93, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654335

RESUMEN

BACKGROUND: The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS: In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS: We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.


Asunto(s)
Microbiota , ARN Ribosómico 16S , Sistema Respiratorio , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Enfermedades Respiratorias/microbiología , Estudios de Casos y Controles , Masculino , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Femenino
3.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370672

RESUMEN

Dietary intake is tightly coupled to gut microbiota composition, human metabolism, and to the incidence of virtually all major chronic diseases. Dietary and nutrient intake are usually quantified using dietary questionnaires, which tend to focus on broad food categories, suffer from self-reporting biases, and require strong compliance from study participants. Here, we present MEDI (Metagenomic Estimation of Dietary Intake): a method for quantifying dietary intake using food-derived DNA in stool metagenomes. We show that food items can be accurately detected in metagenomic shotgun sequencing data, even when present at low abundances (>10 reads). Furthermore, we show how dietary intake, in terms of DNA abundance from specific organisms, can be converted into a detailed metabolic representation of nutrient intake. MEDI could identify the onset of solid food consumption in infants and it accurately predicted food questionnaire responses in an adult population. Additionally, we were able to identify specific dietary features associated with metabolic syndrome in a large clinical cohort, providing a proof-of-concept for detailed quantification of individual-specific dietary patterns without the need for questionnaires.

4.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37162960

RESUMEN

Clostridioides difficile colonizes up to 30-40% of community-dwelling adults without causing disease. C. difficile infections (CDIs) are the leading cause of antibiotic-associated diarrhea in the U.S. and typically develop in individuals following disruption of the gut microbiota due to antibiotic or chemotherapy treatments. Further treatment of CDI with antibiotics is not always effective and can lead to antibiotic resistance and recurrent infections (rCDI). The most effective treatment for rCDI is the reestablishment of an intact microbiota via fecal microbiota transplants (FMTs). However, the success of FMTs has been difficult to generalize because the microbial interactions that prevent engraftment and facilitate the successful clearance of C. difficile are still only partially understood. Here we show how microbial community-scale metabolic models (MCMMs) accurately predicted known instances of C. difficile colonization susceptibility or resistance in vitro and in vivo. MCMMs provide detailed mechanistic insights into the ecological interactions that govern C. difficile engraftment, like cross-feeding or competition involving metabolites like succinate, trehalose, and ornithine, which differ from person to person. Indeed, three distinct C. difficile metabolic niches emerge from our MCMMs, two associated with positive growth rates and one that represents non-growth, which are consistently observed across 15,204 individuals from five independent cohorts. Finally, we show how MCMMs can predict personalized engraftment and C. difficile growth suppression for a probiotic cocktail (VE303) designed to replace FMTs for the treatment rCDI. Overall, this powerful modeling approach predicts personalized C. difficile engraftment risk and can be leveraged to assess probiotic treatment efficacy. MCMMs could be extended to understand the mechanistic underpinnings of personalized engraftment of other opportunistic bacterial pathogens, beneficial probiotic organisms, or more complex microbial consortia.

5.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945445

RESUMEN

Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.

6.
Nat Commun ; 14(1): 6546, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863966

RESUMEN

Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases. When applied to a Crohn's disease case-control study, our approach identifies a lack of species with the ability to consume hydrogen sulfide as the main distinguishing microbiome feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, experiments and clinical targets, and that targeting the restoration of microbial cross-feeding interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Estudios de Casos y Controles , Metagenoma
7.
BMC Complement Med Ther ; 23(1): 367, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853370

RESUMEN

INTRODUCTION: Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS: This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION: The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION: Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION: Pan African Clinical Trials Registry Identifier: PACTR202301748714019. TRIALS: gov: NCT05923333. PROTOCOL VERSION: Version 1.8, dated 18 July 2023.


Asunto(s)
Infecciones por VIH , Vacunas , Femenino , Humanos , Lactante , Embarazo , Bifidobacterium longum subspecies infantis , Suplementos Dietéticos , Infecciones por VIH/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Sudáfrica
8.
Nat Commun ; 14(1): 5682, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709733

RESUMEN

Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.


Asunto(s)
Líquidos Corporales , Metagenoma , Animales , Humanos , Ecosistema , Heces , Densidad de Población , Escherichia coli/genética
9.
bioRxiv ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609334

RESUMEN

Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.

10.
Cell Host Microbe ; 31(7): 1076-1078, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37442093

RESUMEN

The composition of the human gut microbiome is heterogeneous across people. However, if you squint, co-abundant microbial genera emerge, accounting for much of this ecological variability. In this issue of Cell Host & Microbe, Frioux et al. provide a workflow for identifying these bacterial guilds, or "enterosignatures."


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/genética , ARN Ribosómico 16S/genética , ARN Bacteriano
11.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909644

RESUMEN

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation, and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results represent an important advance in engineering gut microbiome functional outputs for precision health and nutrition.

12.
Nat Med ; 29(4): 996-1008, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36941332

RESUMEN

Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity drives a myriad of metabolic perturbations and is a risk factor for multiple chronic diseases. Here we report an atlas of cross-sectional and longitudinal changes in 1,111 blood analytes associated with variation in body mass index (BMI), as well as multiomic associations with host polygenic risk scores and gut microbiome composition, from a cohort of 1,277 individuals enrolled in a wellness program (Arivale). Machine learning model predictions of BMI from blood multiomics captured heterogeneous phenotypic states of host metabolism and gut microbiome composition better than BMI, which was also validated in an external cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI trajectories for different omics measures in response to a healthy lifestyle intervention; metabolomics-inferred BMI decreased to a greater extent than actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to change. Our analyses further identified blood analyte-analyte associations that were modified by metabolomics-inferred BMI and partially reversed in individuals with metabolic obesity during the intervention. Taken together, our findings provide a blood atlas of the molecular perturbations associated with changes in obesity status, serving as a resource to quantify metabolic health for predictive and preventive medicine.


Asunto(s)
Multiómica , Obesidad , Humanos , Índice de Masa Corporal , Estudios Transversales , Obesidad/metabolismo , Fenotipo
13.
mSystems ; 8(2): e0127022, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943046

RESUMEN

Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Community-scale metabolic models hold the potential to simulate the outputs of complex microbial communities in a given environmental context, but there is currently no consensus for what the fitness function of an entire community should look like in the presence of ecological interactions and whether community-wide growth operates close to a maximum. Transitioning from single-taxon genome-scale metabolic models to multitaxon models implies a growth cone without a well-specified growth rate solution for individual taxa. Here, we argue that dynamic approaches naturally overcome these limitations, but they come at the cost of being computationally expensive. Furthermore, we show how two nondynamic, steady-state approaches approximate dynamic trajectories and pick ecologically relevant solutions from the community growth cone with improved computational scalability.


Asunto(s)
Consorcios Microbianos , Modelos Biológicos
14.
Nat Metab ; 4(11): 1560-1572, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357685

RESUMEN

Variation in the blood metabolome is intimately related to human health. However, few details are known about the interplay between genetics and the microbiome in explaining this variation on a metabolite-by-metabolite level. Here, we perform analyses of variance for each of 930 blood metabolites robustly detected across a cohort of 1,569 individuals with paired genomic and microbiome data while controlling for a number of relevant covariates. We find that 595 (64%) of these blood metabolites are significantly associated with either host genetics or the gut microbiome, with 69% of these associations driven solely by the microbiome, 15% driven solely by genetics and 16% under hybrid genome-microbiome control. Additionally, interaction effects, where a metabolite-microbe association is specific to a particular genetic background, are quite common, albeit with modest effect sizes. This knowledge will help to guide targeted interventions designed to alter the composition of the human blood metabolome.


Asunto(s)
Metabolómica , Microbiota , Humanos , Heces , ARN Ribosómico 16S/genética , Metaboloma/genética
15.
Front Oncol ; 12: 914594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875150

RESUMEN

The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.

16.
Med ; 3(6): 388-405.e6, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35690059

RESUMEN

BACKGROUND: Statins remain one of the most prescribed medications worldwide. While effective in decreasing atherosclerotic cardiovascular disease risk, statin use is associated with adverse effects for a subset of patients, including disrupted metabolic control and increased risk of type 2 diabetes. METHODS: We investigated the potential role of the gut microbiome in modifying patient responses to statin therapy across two independent cohorts (discovery n = 1,848, validation n = 991). Microbiome composition was assessed in these cohorts using stool 16S rRNA amplicon and shotgun metagenomic sequencing, respectively. Microbiome associations with markers of statin on-target and adverse effects were tested via a covariate-adjusted interaction analysis framework, utilizing blood metabolomics, clinical laboratory tests, genomics, and demographics data. FINDINGS: The hydrolyzed substrate for 3-hydroxy-3-methylglutarate-coenzyme-A (HMG-CoA) reductase, HMG, emerged as a promising marker for statin on-target effects in cross-sectional cohorts. Plasma HMG levels reflected both statin therapy intensity and known genetic markers for variable statin responses. Through exploring gut microbiome associations between blood-derived measures of statin effectiveness and adverse metabolic effects of statins, we find that heterogeneity in statin responses was consistently associated with variation in the gut microbiome across two independent cohorts. A Bacteroides-enriched and diversity-depleted gut microbiome was associated with more intense statin responses, both in terms of on-target and adverse effects. CONCLUSIONS: With further study and refinement, gut microbiome monitoring may help inform precision statin treatment. FUNDING: This research was supported by the M.J. Murdock Charitable Trust, WRF, NAM Catalyst Award, and NIH grant U19AG023122 awarded by the NIA.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Microbiota , Estudios Transversales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , ARN Ribosómico 16S/genética
17.
mSystems ; 6(5): e0096421, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34519531

RESUMEN

Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. IMPORTANCE Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to dietary interventions, but the exact functional determinants underlying this phenomenon remain unclear. In this study, we set out to better understand interactions between baseline BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent weight changes in a human cohort that underwent a healthy lifestyle intervention. Overall, our results suggest that the microbiota may influence host weight loss responses through variable bacterial growth rates, dietary energy harvest efficiency, and immunomodulation.

18.
Cell Host Microbe ; 29(10): 1589-1598.e6, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34536346

RESUMEN

Colorectal cancer is a major health concern worldwide. Growing evidence for the role of the gut microbiota in the initiation of CRC has sparked interest in approaches that target these microorganisms. However, little is known about the composition and role of the microbiota associated with precancerous polyps. Here, we found distinct microbial signatures between patients with and without polyps and between polyp subtypes using sequencing and culturing techniques. We found a correlation between Bacteroides fragilis recovered and the level of inflammatory cytokines in the mucosa adjacent to the polyp. Additional analysis revealed that B. fragilis from patients with polyps are bft-negative, activate NF-κB through Toll-like receptor 4, induce a pro-inflammatory response, and are enriched in genes associated with LPS biosynthesis. This study provides fundamental insight into the microbial microenvironment of the pre-neoplastic polyp by highlighting strain-specific genomic and proteomic differences, as well as more broad compositional differences in the microbiome.


Asunto(s)
Bacteroides fragilis/genética , Bacteroides fragilis/aislamiento & purificación , Neoplasias Colorrectales/microbiología , Mucosa Intestinal/microbiología , Anciano , Bacteroides fragilis/clasificación , Bacteroides fragilis/fisiología , Pólipos del Colon/inmunología , Pólipos del Colon/microbiología , Pólipos del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Citocinas/genética , Citocinas/inmunología , Femenino , Microbioma Gastrointestinal , Genoma Bacteriano , Genómica , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Filogenia , Simbiosis
19.
Gut Microbes ; 13(1): 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33890557

RESUMEN

Many studies link the composition of the human gut microbiome to aberrant health states. However, our understanding of what constitutes a 'healthy' gut ecosystem, and how to effectively monitor and maintain it, are only now emerging. Here, we review current approaches to defining and monitoring gut microbiome health, and outline directions for developing targeted ecological therapeutics. We emphasize the importance of identifying which ecological features of the gut microbiome are most resonant with host molecular phenotypes, and highlight certain gut microbial metabolites as potential biomarkers of gut microbiome health. We further discuss how multi-omic measurements of host phenotypes, dietary information, and gut microbiome profiles can be integrated into increasingly sophisticated host-microbiome mechanistic models that can be leveraged to design personalized interventions. Overall, we summarize current progress on defining microbiome health and highlight a number of paths forward for engineering the ecology of the gut to promote wellness.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Interacciones Microbiota-Huesped , Metaboloma , Animales , Biomarcadores , Dieta , Humanos , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...