Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurointerv Surg ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299742

RESUMEN

BACKGROUND: Blebs significantly increase rupture risk of intracranial aneurysms. Radiomic analysis offers a robust characterization of the aneurysm wall. However, the unique radiomic profile of various compartments, including blebs, remains unexplored. Likewise, the correlation between these imaging markers and fluid/mechanical metrics is yet to be investigated. To address this, we analyzed the radiomic features (RFs) of bleb-containing aneurysms and their relationship with wall tension and shear stress metrics, aiming to enhance risk assessment. METHODS: Aneurysms were imaged using high-resolution magnetic resonance imaging (MRI). A T1 and a T1 after contrast (T1+Gd) sequences were acquired. 3D models of aneurysm bodies and blebs were generated, and RFs were extracted. Aneurysms with and without blebs were matched based on location and size for analysis. Univariate regression models and Spearman's correlations were used to establish associations between bleb-dependent RFs and mechanical/fluid dynamics metrics. RESULTS: Eighteen aneurysms with blebs were identified. Fifty-five RFs were significantly different between blebs and body within the same aneurysms. Of these RFs, 9% (5/55) were first-order, and 91% (50/55) were second-order features. After aneurysms with and without blebs were matched for location and size, five RFs 5% (5/93) were significantly different. Forty-one out of the 55 RFs different between bleb and body sac of the primary aneurysm were moderately and strongly correlated with mechanical and fluid dynamics metrics. CONCLUSION: Aneurysm blebs exhibit distinct radiomic profiles compared with the main body of the aneurysm sac. The variability in bleb wall characteristics may arise from differing mechanical stresses and localized hemodynamics. Leveraging radiomic profiling could help identify regions with a heightened risk of rupture.

3.
Transl Stroke Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073651

RESUMEN

Despite advancements in acute management, morbidity rates for subarachnoid hemorrhage (SAH) remain high. Therefore, it is imperative to utilize standardized outcome scales in SAH research for evaluating new therapies effectively. This review offers a comprehensive overview of prevalent scales and clinical outcomes used in SAH assessment, accompanied by recommendations for their application and prognostic accuracy. Standardized terminology and diagnostic criteria should be employed when reporting pathophysiological outcomes such as symptomatic vasospasm and delayed cerebral ischemia. Furthermore, integrating clinical severity scales like the World Federation of Neurosurgical Societies scale and modified Fisher score into clinical trials is advised to evaluate their prognostic significance, despite their limited correlation with outcomes. The modified Rankin score is widely used for assessing functional outcomes, while the Glasgow outcome scale-extended version is suitable for broader social and behavioral evaluations. Avoiding score dichotomization is crucial to retain valuable information. Cognitive and behavioral outcomes, though frequently affected in patients with favorable neurological outcomes, are often overlooked during follow-up outpatient visits, despite their significant impact on quality of life. Comprehensive neuropsychological evaluations conducted by trained professionals are recommended for characterizing cognitive function, with the Montreal Cognitive Assessment serving as a viable screening tool. Additionally, integrating psychological inventories like the Beck Depression and Anxiety Inventory, along with quality-of-life scales such as the Stroke-Specific Quality of Life Scale, can effectively assess behavioral and quality of life outcomes in SAH studies.

4.
Transl Stroke Res ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780865

RESUMEN

Emerging evidence indicates that aneurysmal subarachnoid hemorrhage (aSAH) elicits a response from both innate and adaptive immune systems. An upregulation of CD8 + CD161 + cells has been observed in the cerebrospinal fluid (CSF) after aSAH, yet the precise role of these cells in the context of aSAH is unkown. CSF samples from patients with aSAH and non-aneurysmal SAH (naSAH) were analyzed. Single-cell RNA sequencing (scRNAseq) was performed on CD8 + CD161 + sorted samples from aSAH patients. Cell populations were identified using "clustering." Gene expression levels of ten previously described genes involved in inflammation were quantified from aSAH and naSAH samples using RT-qPCR. The study focused on the following genes: CCL5, CCL7, APOE, SPP1, CXCL8, CXCL10, HMOX1, LTB, MAL, and HLA-DRB1. Gene clustering analysis revealed that monocytes, NK cells, and T cells expressed CD8 + CD161 + in the CSF of patients with aSAH. In comparison to naSAH samples, aSAH samples exhibited higher mRNA levels of CXCL10 (median, IQR = 90, 16-149 vs. 0.5, 0-6.75, p = 0.02). A trend towards higher HMOX1 levels was also observed in aSAH (median, IQR = 12.6, 9-17.6 vs. 2.55, 1.68-5.7, p = 0.076). Specifically, CXCL10 and HMOX1 were expressed by the monocyte subpopulation. Monocytes, NK cells, and T cells can potentially express CD8 + CD161 + in patients with aSAH. Notably, monocytes show high levels of CXCL10. The elevated expression of CXCL10 in aSAH compared to naSAH indicates its potential significance as a target for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA