Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628858

RESUMEN

Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.


Asunto(s)
Neoplasias , Proteínas Señalizadoras YAP , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal , Mecanotransducción Celular , Factores de Transcripción , Neoplasias/genética , Cicatrización de Heridas/genética , Biofisica
3.
Biomedicines ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371827

RESUMEN

Differential diagnosis of hypoglycemia in the non-diabetic adult patient is complex and comprises various diseases, including endogenous hyperinsulinism caused by functional ß-cell disorders. The latter is also designated as nesidioblastosis or non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). Clinically, this rare disease presents with unspecific adrenergic and neuroglycopenic symptoms and is, therefore, often overlooked. A combination of careful clinical assessment, oral glucose tolerance testing, 72 h fasting, sectional and functional imaging, and invasive insulin measurements can lead to the correct diagnosis. Due to a lack of a pathophysiological understanding of the condition, conservative treatment options are limited and mostly ineffective. Therefore, nearly all patients currently undergo surgical resection of parts or the entire pancreas. Consequently, apart from faster diagnosis, more elaborate and less invasive treatment options are needed to relieve the patients from the dangerous and devastating symptoms. Based on a case of a 23-year-old man presenting with this disease in our department, we performed an extensive review of the medical literature dealing with this condition and herein presented a comprehensive discussion of this interesting disease, including all aspects from epidemiology to therapy.

4.
Biomedicines ; 11(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371836

RESUMEN

Neurovegetative and autonomic symptoms are common presentations of various diseases, ranging from psychosomatic to severe organic disorders. A 23-year-old man presented with a history of recurrent presyncope, dizziness, and tachycardia. Repeated diagnostic work-up in various clinical settings could not identify any definite cause for approximately eight years. However, the incidental detection of postprandial and exercise-induced hypoglycemia was suggestive of an insulin-related disorder. A 72 h plasma glucose fasting test revealed endogenous hyperinsulinism. Upon imaging studies, no tumor mass potentially indicating insulinoma could be detected. 68Ga-DOTA-Exendin-4 PET/CT showed diffuse tracer enrichment throughout the whole pancreas. A subtotal pancreatectomy was performed, and the diagnosis of diffuse, adult-onset nesidioblastosis was established histopathologically. This corresponds to the clinical findings of a functional ß-cell disorder, also known as non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). After nine months, the symptoms recurred, making complete pancreatectomy necessary. Postoperative laboratory evaluation exhibited no residual endogenous C-peptide production. This case illustrates the diagnostic challenges in patients presenting with unspecific, neurovegetative and autonomic symptoms with a severe and rare underlying cause.

5.
Bioengineering (Basel) ; 10(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36978714

RESUMEN

Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as "trophic mediators". Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.

6.
Cells ; 11(20)2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36291072

RESUMEN

Human dental pulp stem cells (hDPSCs) are promising for oral/craniofacial regeneration, but their purification and characterization is not yet standardized. hDPSCs from three donors were purified by magnetic activated cell sorting (MACS)-assisted STRO-1-positive cell enrichment (+), colony derivation (c), or a combination of both (c/+). Immunophenotype, clonogenicity, stemness marker expression, senescence, and proliferation were analyzed. Multilineage differentiation was assessed by qPCR, immunohistochemistry, and extracellular matrix mineralization. To confirm the credibility of the results, repeated measures analysis and post hoc p-value adjustment were applied. All hDPSC fractions expressed STRO-1 and were similar for several surface markers, while their clonogenicity and expression of CD10/44/105/146, and 166 varied with the purification method. (+) cells proliferated significantly faster than (c/+), while (c) showed the highest increase in metabolic activity. Colony formation was most efficient in (+) cells, which also exhibited the lowest cellular senescence. All hDPSCs produced mineralized extracellular matrix. Regarding osteogenic induction, (c/+) revealed a significant increase in mRNA expression of COL5A1 and COL6A1, while osteogenic marker genes were detected at varying levels. (c/+) were the only population missing BDNF gene transcription increase during neurogenic induction. All hDPSCs were able to differentiate into chondrocytes. In summary, the three hDPSCs populations showed differences in phenotype, stemness, proliferation, and differentiation capacity. The data suggest that STRO-1-positive cell enrichment is the optimal choice for hDPSCs purification to maintain hDPSCs stemness. Furthermore, an (immuno) phenotypic characterization is the minimum requirement for quality control in hDPSCs studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Células Madre , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular , Estándares de Referencia , ARN Mensajero/metabolismo , Pulpa Dental
7.
Pharmaceutics ; 14(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745858

RESUMEN

Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4',6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.

8.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563679

RESUMEN

Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.


Asunto(s)
Mecanotransducción Celular , Ingeniería de Tejidos , Materiales Biocompatibles/farmacología , Humanos , Periodoncio/fisiología , Medicina Regenerativa
9.
Expert Rev Mol Med ; 23: e14, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34702419

RESUMEN

Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.


Asunto(s)
Cartílago Articular , Integrinas , Cadherinas , Condrocitos , Humanos , Integrinas/genética , Mecanotransducción Celular
10.
Biomolecules ; 11(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073044

RESUMEN

Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Mecanotransducción Celular , Neoplasias de la Boca/metabolismo , Periodoncio/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/patología , Núcleo Celular/patología , Matriz Extracelular/patología , Humanos , Neoplasias de la Boca/patología , Proteínas de Neoplasias/metabolismo , Periodoncio/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
11.
Cell Signal ; 72: 109662, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32330602

RESUMEN

In the context of mechanically induced force transmission, the modification of the actin cytoskeleton through involvement of zyxin is an established concept. However, in cells of the periodontal ligament (PDL), which is physiologically subjected to intermittent mechanical forces, the force-responsive modulation of zyxin and the molecular key players, which orchestrate its cellular regulation, have not yet been elucidated. By employing indirect immunofluorescence and western blotting with different subcellular fractions, we show here in stretch force-exposed human PDL fibroblasts (hPDLFs) that (i) the zyxin protein is modulated, and (ii) its subcellular localization is altered. More importantly, using a pharmacological intervention approach, to inhibit the nuclear presence of the co-transcriptional activator yes-associated protein (YAP), we evidence for the first time that on the molecular level, the cellular abundance of zyxin, among the Thyrotrophic Embryonic Factor (TEF)-binding proteins, is regulated by YAP rather than TAZ. Our findings provide novel insights into the topic how cells of the periodontium and the periodontal ligament in particular respond and may adapt to mechanical forces, and first time identify YAP as the key player of the intracellular regulation of the mechano-sensor and mechano-transducer zyxin in hPDLFs. Moreover, the findings broaden the current knowledge on YAP, since so far, currently only very few YAP-regulated genes have been identified.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligamento Periodontal/citología , Factores de Transcripción/metabolismo , Zixina/metabolismo , Proteínas 14-3-3/metabolismo , Adolescente , Fenómenos Biomecánicos , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Estrés Mecánico , Fracciones Subcelulares/metabolismo , Factores de Transcripción de Dominio TEA , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Verteporfina/farmacología , Proteínas Señalizadoras YAP
12.
Cell Signal ; 63: 109382, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376525

RESUMEN

The HIPPO pathway effector YAP has been shown to be regulated by FAK-signaling. However, the existence of an inverse relationship between YAP and FAK is unknown. Here we demonstrate in hMSCs and in the human osteosarcoma derived cell line Saos that Verteporfin- or RNAi-dependent YAP depletion has opposing influence on FAK. While Verteporfin strikingly reduced cellular FAK protein and phosphorylation, RNAi led to an increase of both molecules and point on a generalizable aspect of the YAP/FAK interrelationship. YAP depletion also caused down-regulation of osteogenic genes in hMSCs, irrespective from the YAP intervention mode. Verteporfin induced topological changes in conjunction with reduced protein levels of ß1 integrin, paxillin, and zyxin of focal adhesions (FAs) in hMSCs, suggesting FAK-decrease-related alterations in FAs, which seems to be a FAK-dependent mechanism. On the cell behavioral level, YAP-FAK-interrelation involves proliferation and senescence, as indicated by proliferation inhibition and increase of ß-Galactosidase-activity in hMSCs. Our findings, derived from this dual strategy of YAP intervention, reveal a YAP-FAK relationship in conjunction with molecular and cell behavioral consequences. Moreover, they deepen the current scientific knowledge on YAP from a different scientific point of view, since this inverse YAP/FAK-relationship seems to be transferrable to other cell types, including cell entities with pathological background.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Óseas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Osteosarcoma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Quinasa 1 de Adhesión Focal/genética , Adhesiones Focales , Silenciador del Gen , Humanos , Células Madre Mesenquimatosas , Osteosarcoma/patología , Interferencia de ARN , Factores de Transcripción/genética , Verteporfina/farmacología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...