Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 10691, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612150

RESUMEN

Plants exude a diverse cocktail of metabolites into the soil as response to exogenous and endogenous factors. So far, root exudates have mainly been studied under artificial conditions due to methodological difficulties. In this study, each five perennial grass and forb species were investigated for polar and semi-polar metabolites in exudates under field conditions. Metabolite collection and untargeted profiling approaches combined with a novel classification method allowed the designation of 182 metabolites. The composition of exuded polar metabolites depended mainly on the local environment, especially soil conditions, whereas the pattern of semi-polar metabolites was primarily affected by the species identity. The profiles of both polar and semi-polar metabolites differed between growth forms, with grass species being generally more similar to each other and more responsive to the abiotic environment than forb species. This study demonstrated the feasibility of investigating exudates under field conditions and to identify the driving factors of exudate composition.


Asunto(s)
Exudados de Plantas/metabolismo , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Asteraceae/clasificación , Asteraceae/metabolismo , Ecosistema , Cromatografía de Gases y Espectrometría de Masas , Pradera , Fenómenos Fisiológicos de las Plantas , Plantaginaceae/clasificación , Plantaginaceae/metabolismo , Poaceae/clasificación , Ranunculaceae/clasificación , Ranunculaceae/metabolismo , Rizosfera , Rubiaceae/clasificación , Rubiaceae/metabolismo
2.
ISME J ; 14(2): 463-475, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659233

RESUMEN

The active bacterial rhizobiomes and root exudate profiles of phytometers of six plant species growing in central European temperate grassland communities were investigated in three regions located up to 700 km apart, across diverse edaphic conditions and along a strong land use gradient. The recruitment process from bulk soil communities was identified as the major direct driver of the composition of active rhizosphere bacterial communities. Unexpectedly, the effect of soil properties, particularly soil texture, water content, and soil type, strongly dominated over plant properties and the composition of polar root exudates of the primary metabolism. While plant species-specific selection of bacteria was minor, the RNA-based composition of active rhizosphere bacteria substantially differed between rhizosphere and bulk soil. Although other variables could additionally be responsible for the consistent enrichment of particular bacteria in the rhizosphere, distinct bacterial OTUs were linked to the presence of specific polar root exudates independent of individual plant species. Our study also identified numerous previously unknown taxa that are correlated with rhizosphere dynamics and hence represent suitable targets for future manipulations of the plant rhizobiome.


Asunto(s)
Bacterias/aislamiento & purificación , Pradera , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Raíces de Plantas/microbiología , Suelo/química
3.
Ecol Evol ; 9(10): 5526-5541, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31160980

RESUMEN

In the rhizosphere, plants are exposed to a multitude of different biotic and abiotic factors, to which they respond by exuding a wide range of secondary root metabolites. So far, it has been unknown to which degree root exudate composition is species-specific and is affected by land use, the local impact and local neighborhood under field conditions. In this study, root exudates of 10 common grassland species were analyzed, each five of forbs and grasses, in the German Biodiversity Exploratories using a combined phytometer and untargeted liquid chromatography-mass spectrometry (LC-MS) approach. Redundancy analysis and hierarchical clustering revealed a large set of semi-polar metabolites common to all species in addition to species-specific metabolites. Chemical richness and exudate composition revealed that forbs, such as Plantago lanceolata and Galium species, exuded more species-specific metabolites than grasses. Grasses instead were primarily affected by environmental conditions. In both forbs and grasses, plant functional traits had only a minor impact on plant root exudation patterns. Overall, our results demonstrate the feasibility of obtaining and untargeted profiling of semi-polar metabolites under field condition and allow a deeper view in the exudation of plants in a natural grassland community.

4.
PLoS One ; 14(3): e0213965, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865711

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0204128.].

5.
PLoS One ; 13(10): e0204128, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281675

RESUMEN

Primary and secondary metabolites exuded by plant roots have mainly been studied under laboratory conditions, while knowledge of root exudate patterns of plants growing in natural communities is very limited. Focusing on ten common European grassland plant species, we asked to which degree exuded metabolite compositions are specific to species or growth forms (forbs and grasses), depend on environments and local neighbourhoods, and reflect traditional plant functional traits. Root exudates were collected under field conditions and analysed using a non-targeted gas chromatography coupled mass spectrometry (GC-MS) approach. In total, we annotated 153 compounds of which 36 were identified by structure and name as metabolites mainly derived from the primary metabolism. Here we show by using variance partitioning, that the composition of exuded polar metabolites was mostly explained by plot identity, followed by plant species identity while plant species composition of the local neighbourhood played no role. Total and root dry biomass explained the largest proportion of variance in exudate composition, with additional variance explained by traditional plant traits. Although the exudate composition was quite similar between the two growth forms, we found some metabolites that occurred only in one of the two growth forms. Our study demonstrated the feasibility of measuring polar exudates under non-sterile field conditions by mass spectrometry, which opens new avenues of research for functional plant ecology.


Asunto(s)
Exudados de Plantas/química , Raíces de Plantas/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Pradera , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Agua/química
6.
Int J Mol Sci ; 19(5)2018 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-29734799

RESUMEN

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.


Asunto(s)
Ecología , Metabolómica/tendencias , Plantas/genética , Plantas/metabolismo
7.
Ecol Evol ; 7(21): 8958-8965, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29177035

RESUMEN

Plant functional traits are widely used to predict community productivity. However, they are rarely used to predict individual plant performance in grasslands. To assess the relative importance of traits compared to environment, we planted seedlings of 20 common grassland species as phytometers into existing grassland communities varying in land-use intensity. After 1 year, we dug out the plants and assessed root, leaf, and aboveground biomass, to measure plant performance. Furthermore, we determined the functional traits of the phytometers and of all plants growing in their local neighborhood. Neighborhood impacts were analyzed by calculating community-weighted means (CWM) and functional diversity (FD) of every measured trait. We used model selection to identify the most important predictors of individual plant performance, which included phytometer traits, environmental conditions (climate, soil conditions, and land-use intensity), as well as CWM and FD of the local neighborhood. Using variance partitioning, we found that most variation in individual plant performance was explained by the traits of the individual phytometer plant, ranging between 19.30% and 44.73% for leaf and aboveground dry mass, respectively. Similarly, in a linear mixed effects model across all species, performance was best predicted by phytometer traits. Among all environmental variables, only including land-use intensity improved model quality. The models were also improved by functional characteristics of the local neighborhood, such as CWM of leaf dry matter content, root calcium concentration, and root mass per volume as well as FD of leaf potassium and root magnesium concentration and shoot dry matter content. However, their relative effect sizes were much lower than those of the phytometer traits. Our study clearly showed that under realistic field conditions, the performance of an individual plant can be predicted satisfyingly by its functional traits, presumably because traits also capture most of environmental and neighborhood conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...