Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sci Rep ; 14(1): 11749, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782985

RESUMEN

Tertiary lymphoid structures (TLS) are lymphoid organs present in inflammatory non-lymphoid tissues. Studies have linked TLS to favorable outcomes for patients with cancers or infectious diseases, but the mechanisms underlying their formation are not fully understood. In particular, secondary lymphoid organs innervation raises the question of sympathetic nerve fibers involvement in TLS organogenesis. We established a model of pulmonary inflammation based on 5 daily intranasal instillations of lipopolysaccharide (LPS) in immunocompetent mice. In this setting, lung lymphoid aggregates formed transiently, evolving toward mature TLS and disappearing when inflammation resolved. Sympathetic nerve fibers were then depleted using 6-hydroxydopamine. TLS quantification by immunohistochemistry showed a decrease in LPS-induced TLS number and surface in denervated mouse lungs. Although a reduction in alveolar space was observed, it did not impair overall pulmonary content of transcripts encoding TNF-α, IL-1ß and IFN-γ inflammation molecules whose expression was induced by LPS instillations. Immunofluorescence analysis of immune infiltrates in lungs of LPS-treated mice showed a drop in the proportion of CD23+ naive cells among CD19+ B220+ B cells in denervated mice whereas the proportion of other cell subsets remained unchanged. These data support the existence of neuroimmune crosstalk impacting lung TLS neogenesis and local naive B cell pool.


Asunto(s)
Lipopolisacáridos , Pulmón , Neumonía , Sistema Nervioso Simpático , Estructuras Linfoides Terciarias , Animales , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Ratones , Neumonía/patología , Neumonía/metabolismo , Neumonía/inmunología , Pulmón/inervación , Pulmón/patología , Pulmón/inmunología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Linfocitos B/inmunología , Masculino
2.
Med Sci (Paris) ; 40(2): 186-191, 2024 Feb.
Artículo en Francés | MEDLINE | ID: mdl-38411427

RESUMEN

Title: Prix Nobel de physiologie ou médecine 2023 : Katalin Karikó et Drew Weissman - Une révolution vaccinale portée par la recherche fondamentale en immunologie et en biologie moléculaire. Abstract: Le 2 octobre 2023, le prix Nobel de physiologie ou médecine a été décerné à Katalin Karikó et Drew Weissman, tous deux professeurs à l'université de Pennsylvanie, pour leur « découverte concernant les modifications des nucléosides qui ont permis le développement de vaccins ARN efficaces contre le COVID-19 ¼. Le communiqué du comité Nobel indique que « grâce à leurs découvertes exceptionnelles qui ont changé radicalement notre compréhension des mécanismes par lesquels l'ARN messager interagit avec notre système immunitaire, ces deux lauréats ont contribué au développement, avec une rapidité sans précédent, d'un vaccin contre l'une des plus grandes menaces des temps modernes affectant la santé humaine ¼.


Asunto(s)
Medicina , Premio Nobel , Humanos , Biología Molecular
3.
Front Immunol ; 14: 1231734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691949

RESUMEN

Introduction: Tissue biomarkers that aid in identifying cutaneous melanoma (CM) patients who will benefit from adjuvant immunotherapy are of crucial interest. Metastatic tumor-draining lymph nodes (mTDLN) are the first encounter site between the metastatic CM cells and an organized immune structure. Therefore, their study may reveal mechanisms that could influence patients´ outcomes. Methods: Twenty-nine stage-III CM patients enrolled in clinical trials to study the vaccine VACCIMEL were included in this retrospective study. After radical mTDLN dissection, patients were treated with VACCIMEL (n=22) or IFNα-2b (n=6), unless rapid progression (n=1). Distant Metastasis-Free Survival (DMFS) was selected as an end-point. Two cohorts of patients were selected: one with a good outcome (GO) (n=17; median DMFS 130.0 months), and another with a bad outcome (BO) (n=12; median DMFS 8.5 months). We analyzed by immunohistochemistry and immunofluorescence the expression of relevant biomarkers to tumor-cell biology and immune cells and structures in mTDLN, both in the tumor and peritumoral areas. Results: In BO patients, highly replicating Ki-67+ tumor cells, low tumor HLA-I expression and abundant FoxP3+ lymphocytes were found (p=0.037; p=0.056 and p=0.021). In GO patients, the most favorable biomarkers for prolonged DMFS were the abundance of peri- and intra-tumoral CD11c+ cells (p=0.0002 and p=0.001), peri-tumoral DC-LAMP+ dendritic cells (DCs) (p=0.001), and PNAd+ High Endothelial Venules (HEVs) (p=0.004). Most strikingly, we describe in GO patients a peculiar, heterogeneous structure that we named FAPS (Favoring Antigen-Presenting Structure), a triad composed of DC, HEV and CD62L+ naïve lymphocytes, whose postulated role would be to favor tumor antigen (Ag) priming of incoming naïve lymphocytes. We also found in GO patients a preferential tumor infiltration of CD8+ and CD20+ lymphocytes (p=0.004 and p=0.027), as well as peritumoral CD20+ aggregates, with no CD21+ follicular dendritic cells detected (p=0.023). Heterogeneous infiltration with CD64+CD68-CD163-, CD64+CD68+CD163- and CD64+CD68+CD163+ macrophages were observed in both cohorts. Discussion: The analysis of mTDLN in GO and BO patients revealed marked differences. This work highlights the importance of analyzing resected mTDLN from CM patients and suggests a correlation between tumor and immune characteristics that may be associated with a spontaneous or vaccine-induced long DMFS. These results should be confirmed in prospective studies.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Vénulas , Estudios Prospectivos , Estudios Retrospectivos , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Ganglios Linfáticos , Inmunoterapia , Células Dendríticas , Melanoma Cutáneo Maligno
4.
Semin Immunol ; 69: 101796, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356421

RESUMEN

Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Estructuras Linfoides Terciarias , Humanos , Virus Oncolíticos/fisiología , Inmunoterapia , Microambiente Tumoral
5.
Commun Biol ; 5(1): 1416, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566320

RESUMEN

On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Estructuras Linfoides Terciarias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Neoplasias Pulmonares/patología , Estructuras Linfoides Terciarias/metabolismo , Estructuras Linfoides Terciarias/patología , Linfocitos Infiltrantes de Tumor
7.
Cancer Cell ; 40(3): 240-243, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216677

RESUMEN

In this issue of Cancer Cell, Patil et al. report that increased plasma cell signatures are predictive of an extended overall survival in non-small-cell lung cancer patients treated with a PD-L1 inhibitor and that these cells are associated with the presence of tertiary lymphoid structures.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígeno B7-H1/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Células Plasmáticas
8.
Front Oncol ; 12: 1068979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713516

RESUMEN

Introduction: Oral Squamous Cell Carcinomas (OSCC) are mostly related to tobacco consumption eventually associated to alcohol (Smoker/Drinker patients: SD), but 25-30% of the patients have no identified risk factors (Non-Smoker/Non-Drinker patients: NSND). We hypothesized that these patients have distinguishable immune profiles that could be useful for prognosis. Materials and Methods: Cells present in immune tumor microenvironment (TME) and blood from 87 OSCC HPV-negative patients were analyzed using a multiparameter flow cytometry assay, in a prospective case-control study. Cytokine levels in tumor supernatants and blood were determined by a cytometric bead array (CBA) assay. Results: Normal gingiva and blood from healthy donors (HD) were used as controls. A significant increase of granulocytes (p<0.05 for blood), of monocytes-macrophages (p<0.01 for blood) and of CD4+ T cells expressing CD45RO and CCR6 (p<0.001 for blood; p<0.0001 for TME) as well as higher levels of IL-6 (p<0.01 for sera, p<0.05 for tumor supernatant) were observed in SD patients as compared to NSND OSCC patients and HD. High percentages of CD4+ T cells expressing CD45RO and CCR6 cells in tumor tissue (p=0.05) and blood (p=0.05) of SD OSCC patients were also associated with a poorer prognosis while a high percentage of regulatory T cells (Treg) in tumor tissue was associated with a more favorable prognostic factor (p=0.05). Also, a higher percentage of blood CD8+ T lymphocytes among CD45+ cells in NSND patients was associated with a better disease-free survival (p=0.004). Conclusion: Granulocytes, monocytes-macrophages, and CD4+ T cells expressing CD45RO and CCR6 in blood and TME as well as serum IL-6 can therefore distinguish OSCC SD and NSND patients. Quantifying the proportion of CD4+ T cells expressing CD45RO and CCR6 and of Treg in SD patients and CD8+ T cells in NSND patients could help defining the prognostic of OSCC patients.

9.
Adv Exp Med Biol ; 1329: 51-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664233

RESUMEN

The different forms of lymphoid organization that coexist in our bodies appeared at distinct time points during the evolution of the animal kingdom. Some of these forms are constitutive, either in fully dedicated organs, such as lymph nodes, or in tissue interfacing with the external environment, such as mucosal-associated lymphoid tissues. Others, known as tertiary lymphoid structures (TLS), are selectively induced in response to inflammation in any peripheral tissues and organs. In this chapter, we discuss the functional interest of each of these lymphoid organizations under different physiopathological conditions. In the context of cancer, recent findings have identified TLS formation as a hallmark of active T- and B-cell immune responses against tumors. TLS are thus a powerful prognostic factor in nearly all solid cancers, which must be taken into account along with the tumor microenvironment. The presence of TLS also predicts the response to immunotherapy including immune checkpoint blockade. With tumor-associated TLS now a key target for the next generation of immunotherapy, this chapter discusses their potential therapeutic manipulations in oncology.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Animales , Biomarcadores de Tumor/genética , Inmunoterapia , Neoplasias/terapia , Estructuras Linfoides Terciarias/genética , Microambiente Tumoral
10.
Front Immunol ; 12: 698604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276690

RESUMEN

The tumor microenvironment is a complex ecosystem almost unique to each patient. Most of available therapies target tumor cells according to their molecular characteristics, angiogenesis or immune cells involved in tumor immune-surveillance. Unfortunately, only a limited number of patients benefit in the long-term of these treatments that are often associated with relapses, in spite of the remarkable progress obtained with the advent of immune checkpoint inhibitors (ICP). The presence of "hot" tumors is a determining parameter for selecting therapies targeting the patient immunity, even though some of them still do not respond to treatment. In human studies, an in-depth analysis of the organization and interactions of tumor-infiltrating immune cells has revealed the presence of an ectopic lymphoid organization termed tertiary lymphoid structures (TLS) in a large number of tumors. Their marked similarity to secondary lymphoid organs has suggested that TLS are an "anti-tumor school" and an "antibody factory" to fight malignant cells. They are effectively associated with long-term survival in most solid tumors, and their presence has been recently shown to predict response to ICP inhibitors. This review discusses the relationship between TLS and the molecular characteristics of tumors and the presence of oncogenic viruses, as well as their role when targeted therapies are used. Also, we present some aspects of TLS biology in non-tumor inflammatory diseases and discuss the putative common characteristics that they share with tumor-associated TLS. A detailed overview of the different pre-clinical models available to investigate TLS function and neogenesis is also presented. Finally, new approaches aimed at a better understanding of the role and function of TLS such as the use of spheroids and organoids and of artificial intelligence algorithms, are also discussed. In conclusion, increasing our knowledge on TLS will undoubtedly improve prognostic prediction and treatment selection in cancer patients with key consequences for the next generation immunotherapy.


Asunto(s)
Neoplasias/inmunología , Estructuras Linfoides Terciarias/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos
11.
J Immunother Cancer ; 9(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34162714

RESUMEN

BACKGROUND: Tumors rewire their metabolism to achieve robust anabolism and resistance against therapeutic interventions like cisplatin treatment. For example, a prolonged exposure to cisplatin causes downregulation of pyridoxal kinase (PDXK), the enzyme that generates the active vitamin B6, and upregulation of poly ADP-ribose (PAR) polymerase-1 (PARP1) activity that requires a supply of nicotinamide (vitamin B3) adenine dinucleotide. We investigated the impact of the levels of PDXK and PAR on the local immunosurveillance (ie, density of the antigen presenting cells and adaptive immune response by CD8 T lymphocytes) in two different tumor types. METHODS: Tumors from patients with locally advanced cervical carcinoma (LACC) and non-small cell lung cancer (NSCLC) were stained for PAR, PDXK, dendritic cell lysosomal associated membrane glycoprotein (DC-LAMP) and CD8 T cell infiltration. Their correlations and prognostic impact were assessed. Cisplatin-resistant NSCLC cell clones isolated from Lewis-lung cancer (LLC) cells were evaluated for PAR levels by immunoblot. Parental (PARlow) and cisplatin-resistant (PARhigh) clones were subcutaneously injected into the flank of C57BL/6 mice. Tumors were harvested to evaluate their immune infiltration by flow cytometry. RESULTS: The infiltration of tumors by CD8 T and DC-LAMP+ cells was associated with a favorable overall survival in patients with LACC (p=0.006 and p=0.008, respectively) and NSCLC (p<0.001 for both CD8 T and DC-LAMP cells). We observed a positive correlation between PDXK expression and the infiltration by DC-LAMP (R=0.44, p=0.02 in LACC, R=0.14, p=0.057 in NSCLC), and a negative correlation between PAR levels and CD8 T lymphocytes (R=-0.39, p=0.034 in LACC, R=-0.18, p=0.017 in NSCLC). PARP1 is constitutively hyperactivated in cisplatin-resistant LLC cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PARhigh). Tumors formed by such cancer cells injected into immunocompetent mice were scarcely infiltrated by CD8 T (p=0.028) and antigen presenting cells (p=0.086). CONCLUSIONS: Oncometabolic features can impact local immunosurveillance, providing new functional links between cisplatin resistance and therapeutic failure.


Asunto(s)
Inmunoterapia/métodos , Monitorización Inmunológica/métodos , Neoplasias/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Microambiente Tumoral/inmunología
12.
Front Immunol ; 12: 626776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763071

RESUMEN

The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.


Asunto(s)
Linfocitos B/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Transcriptoma , Microambiente Tumoral/inmunología
14.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067317

RESUMEN

BACKGROUND: Natural killer (NK) cells play a crucial role in tumor immunosurveillance through their cytotoxic effector functions and their capacity to interact with other immune cells to build a coordinated antitumor immune response. Emerging data reveal NK cell dysfunction within the tumor microenvironment (TME) through checkpoint inhibitory molecules associated with a regulatory phenotype. OBJECTIVE: We aimed at analyzing the gene expression profile of intratumoral NK cells compared with non-tumorous NK cells, and to characterize their inhibitory function in the TME. METHODS: NK cells were sorted from human lung tumor tissue and compared with non- tumoral distant lungs. RESULTS: In the current study, we identify a unique gene signature of NK cell dysfunction in human non-small cell lung carcinoma (NSCLC). First, transcriptomic analysis reveals significant changes related to migratory pattern with a downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) and CX3C chemokine receptor 1 (CX3CR1) and overexpression of C-X-C chemokine receptor type 5 (CXCR5) and C-X-C chemokine receptor type 6 (CXCR6). Second, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and killer cell lectin like receptor (KLRC1) inhibitory molecules were increased in intratumoral NK cells, and CTLA-4 blockade could partially restore MHC class II level on dendritic cell (DC) that was impaired during the DCs/NK cell cross talk. Finally, NK cell density impacts the positive prognostic value of CD8+ T cells in NSCLC. CONCLUSIONS: These findings demonstrate novel molecular cues associated with NK cell inhibitory functions in NSCLC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Transcriptoma/genética , Humanos , Microambiente Tumoral
15.
J Immunother Cancer ; 7(1): 121, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060602

RESUMEN

BACKGROUND: Immune checkpoint therapies (ICTs) targeting the programmed cell death-1 (PD1)/programmed cell death ligand-1 (PD-L1) pathway have improved outcomes for patients with non-small cell lung cancer (NSCLC), particularly those with high PD-L1 expression. However, the predictive value of manual PD-L1 scoring is imperfect and alternative measures are needed. We report an automated image analysis solution to determine the predictive and prognostic values of the product of PD-L1+ cell and CD8+ tumor infiltrating lymphocyte (TIL) densities (CD8xPD-L1 signature) in baseline tumor biopsies. METHODS: Archival or fresh tumor biopsies were analyzed for PD-L1 and CD8 expression by immunohistochemistry. Samples were collected from 163 patients in Study 1108/NCT01693562, a Phase 1/2 trial to evaluate durvalumab across multiple tumor types, including NSCLC, and a separate cohort of 199 non-ICT- patients. Digital images were automatically scored for PD-L1+ and CD8+ cell densities using customized algorithms applied with Developer XD™ 2.7 software. RESULTS: For patients who received durvalumab, median overall survival (OS) was 21.0 months for CD8xPD-L1 signature-positive patients and 7.8 months for signature-negative patients (p = 0.00002). The CD8xPD-L1 signature provided greater stratification of OS than high densities of CD8+ cells, high densities of PD-L1+ cells, or manually assessed tumor cell PD-L1 expression ≥25%. The CD8xPD-L1 signature did not stratify OS in non-ICT patients, although a high density of CD8+ cells was associated with higher median OS (high: 67 months; low: 39.5 months, p = 0.0009) in this group. CONCLUSIONS: An automated CD8xPD-L1 signature may help to identify NSCLC patients with improved response to durvalumab therapy. Our data also support the prognostic value of CD8+ TILS in NSCLC patients who do not receive ICT. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01693562 . Study code: CD-ON-MEDI4736-1108. Interventional study (ongoing but not currently recruiting). Actual study start date: August 29, 2012. Primary completion date: June 23, 2017 (final data collection date for primary outcome measure).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/patología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/análisis , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Biopsia , Antígenos CD8/análisis , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Inmunohistoquímica , Pulmón/efectos de los fármacos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
16.
Med Sci (Paris) ; 35(12): 957-965, 2019 Dec.
Artículo en Francés | MEDLINE | ID: mdl-31903900

RESUMEN

The identification in the 1990's of the role of CTLA-4 and PD-1, two inhibitory receptors of T lymphocytes, in the control of the anti-tumor immune responses, led to the awarding of the Nobel Prize in Physiology or Medicine in 2018 to Dr. James Allison and Dr. Tasuku Honjo. These inhibitory receptors called immune checkpoints are essential to prevent any deleterious impact of on-going immune responses against pathogens or cancer cells on healthy tissues and, hence, guarantee the integrity of the host. These major discoveries have led James Allison and Tasuku Honjo to develop anti-CTLA-4 and anti-PD1/L-1 antibodies, respectively, in order to switch off these immune "brakes", making it possible to efficiently attack tumor cells. CTLA-4 regulates the amplitude of the early T-cell activation and inhibits the activity of CD28, a major activating co-receptor expressed by T cells. PD-1 is expressed by memory and effector T lymphocytes and is involved in the regulation of chronically activated cells, as observed during inflammatory processes. Immunotherapeutic treatments resulting from these discoveries have now a major place in the arsenal of anti-cancer therapies. This review presents firstly a synthesis of knowledge on CTLA-4, PD-1 and their ligands, their mechanisms of action and regulation and, secondly, an overview of biomarkers that have been associated with clinical response to anti-PD-1/PD-L1 and anti-CTLA-4 antibody therapies.


TITLE: La biologie des cibles PD-1 et CTLA-4 et la question des biomarqueurs. ABSTRACT: L'identification dans les années 1990 du rôle des molécules CTLA-41 et PD-1, des récepteurs inhibiteurs des lymphocytes T (LT), dans le contrôle de la réponse immunitaire anti-tumorale, a conduit à l'attribution du Prix Nobel de Physiologie ou Médecine en 2018 à James Allison et Tasuku Honjo. Ces récepteurs inhibiteurs définissent ainsi des points de contrôle immunologique, communément nommés par l'anglicisme immune checkpoints, indispensables pour éviter un retentissement délétère de la réponse immunitaire sur les tissus sains et ainsi garantir l'intégrité de l'hôte. Cette découverte majeure a conduit Allison et Honjo à développer des anticorps capables de provoquer le relâchement de ces « freins ¼ immunitaires, permettant ainsi d'attaquer avec efficacité les cellules tumorales. La molécule CTLA-4 module l'amplitude de l'activation précoce des LT et inhibe l'activité de CD28, un co-récepteur activateur majeur de ces cellules. La molécule PD-1 est, elle, exprimée par les LT mémoires et effecteurs, et semble intervenir dans la régulation des cellules chroniquement activées, comme lors des processus inflammatoires. Les traitements par anticorps qui découlent de ces découvertes ont pris une place majeure dans l'arsenal des thérapies anti-cancéreuses. Cette revue présente une synthèse des connaissances sur CTLA-4, PD-1 et leurs ligands, de leurs mécanismes d'action et de régulation, ainsi qu'un état des lieux de la compréhension des biomarqueurs associés à la réponse clinique des traitements par anticorps anti-PD-1/PD-L1 et anti-CTLA-4.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Biomarcadores de Tumor , Antígeno CTLA-4/fisiología , Inmunoterapia , Terapia Molecular Dirigida/métodos , Receptor de Muerte Celular Programada 1/fisiología , Antígeno B7-H1/fisiología , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias , Terapia Molecular Dirigida/tendencias , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/terapia
17.
Methods Mol Biol ; 1845: 47-69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141007

RESUMEN

Tertiary lymphoid structures (TLS) are considered as genuine markers of inflammation. Their presence within inflamed tissues or within the tumor microenvironment has been associated with the local development of an active immune response. While high densities of TLS are correlated with disease severity in autoimmune diseases or during graft rejection, it has been associated with longer patient survival in many cancer types. Their efficient visualization and quantification within human tissues may represent new tools for helping clinicians in adjusting their therapeutic strategy. Some immunohistochemistry (IHC) protocols are already used in the clinic to appreciate the level of immune infiltration in formalin-fixed, paraffin-embedded (FFPE) tissues. However, the use of two or more markers may sometimes be useful to better characterize this immune infiltrate, especially in the case of TLS. Besides the growing development of multiplex labeling approaches, imaging can also be used to overcome some technical difficulties encountered during the immunolabeling of tissues with several markers.This chapter describes IHC methods to visualize in a human tissue (tumoral or not) the presence of TLS. These methods are based on the immunostaining of four TLS-associated immune cell populations, namely follicular B cells, follicular dendritic cells (FDCs), mature dendritic cells (mDCs), and follicular helper T cells (TFH), together with non-TFH T cells. Methodologies for subsequent quantification of TLS density are also proposed, as well as a virtual multiplexing method based on image registration using the open-source software ImageJ (IJ), aiming at co-localizing several immune cell populations from different IHC stainings performed on serial tissue sections.


Asunto(s)
Microambiente Celular/inmunología , Inmunohistoquímica , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Biomarcadores , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica/métodos , Linfocitos/inmunología , Linfocitos/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Programas Informáticos , Estructuras Linfoides Terciarias/metabolismo , Microambiente Tumoral/inmunología
18.
Methods Mol Biol ; 1845: 119-137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141011

RESUMEN

Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been recently appreciated as a major driver of the local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to operate. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.


Asunto(s)
Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/patología , Transcriptoma , Perfilación de la Expresión Génica/métodos , Humanos , Captura por Microdisección con Láser/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
Methods Mol Biol ; 1845: 189-204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141014

RESUMEN

The tumor microenvironment is a complex network of interacting cells composed of immune and nonimmune cells. It has been reported that the composition of the immune contexture has a significant impact on tumor growth and patient survival in different solid tumors. For instance, we and other groups have previously demonstrated that a strong infiltration of T-helper type 1 (Th1) or memory CD8+ T cells is associated with long-term survival of cancer patients. Nevertheless, the prognostic value of the other immune populations, namely regulatory T cells (Treg), B cells, and gamma delta (γδ) T cells, remains a matter of debate. Herein, we describe novel flow cytometry-based strategies to sort out these different immune populations in order to evaluate their role in non-small cell lung cancer (NSCLC).


Asunto(s)
Citometría de Flujo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/metabolismo , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Citometría de Flujo/métodos , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/patología , Microambiente Tumoral/inmunología
20.
Oncoimmunology ; 7(5): e1423184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721382

RESUMEN

Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161+ CD4+ and CD8+ T cells as compared to normal distant lung and peripheral blood. CD161+ CD4+ T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161+ CD4+ T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4+ T cells ideal candidates for efficient anti-tumor recall responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...