Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4412, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887872

RESUMEN

Capture and conversion of CO2 from oceanwater can lead to net-negative emissions and can provide carbon source for synthetic fuels and chemical feedstocks at the gigaton per year scale. Here, we report a direct coupled, proof-of-concept electrochemical system that uses a bipolar membrane electrodialysis (BPMED) cell and a vapor-fed CO2 reduction (CO2R) cell to capture and convert CO2 from oceanwater. The BPMED cell replaces the commonly used water-splitting reaction with one-electron, reversible redox couples at the electrodes and demonstrates the ability to capture CO2 at an electrochemical energy consumption of 155.4 kJ mol-1 or 0.98 kWh kg-1 of CO2 and a CO2 capture efficiency of 71%. The direct coupled, vapor-fed CO2R cell yields a total Faradaic efficiency of up to 95% for electrochemical CO2 reduction to CO. The proof-of-concept system provides a unique technological pathway for CO2 capture and conversion from oceanwater with only electrochemical processes.

2.
ChemSusChem ; 11(11): 1797-1804, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29692002

RESUMEN

Amorphous silicon carbide (a-SiC:H) is a promising material for photoelectrochemical water splitting owing to its relatively small band-gap energy and high chemical and optoelectrical stability. This work studies the interplay between charge-carrier separation and collection, and their injection into the electrolyte, when modifying the semiconductor/electrolyte interface. By introducing an n-doped nanocrystaline silicon oxide layer into a p-doped/intrinsic a-SiC:H photocathode, the photovoltage and photocurrent of the device can be significantly improved, reaching values higher than 0.8 V. This results from enhancing the internal electric field of the photocathode, reducing the Shockley-Read-Hall recombination at the crucial interfaces because of better charge-carrier separation. In addition, the charge-carrier injection into the electrolyte is enhanced by introducing a TiO2 protective layer owing to better band alignment at the interface. Finally, the photocurrent was further enhanced by tuning the absorber layer thickness, arriving at a thickness of 150 nm, after which the current saturates to 10 mA cm-2 at 0 V vs. the reversible hydrogen electrode in a 0.2 m aqueous potassium hydrogen phthalate (KPH) electrolyte at pH 4.

3.
J Phys Chem C Nanomater Interfaces ; 122(10): 5462-5471, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29568340

RESUMEN

Metal-insulator-semiconductor (MIS) photoelectrodes offer a simple alternative to the traditional semiconductor-liquid junction and the conventional p-n junction electrode. Highly efficient MIS photoanodes require interfacial surface passivating oxides and high workfunction metals to produce a high photovoltage. Herein, we investigate and analyze the effect of interfacial oxides and metal workfunctions on the barrier height and the photovoltage of a c-Si photoanode. We use two metal components in a bimetal contact configuration and observe the modulation of the effective barrier height and the resulting photovoltage as a function of the secondary outer metal. The photovoltage shows a strong linear dependence by increasing the inner metal workfunction, with the highest photovoltage achieved by a MIS photoanode using a platinum inner metal. We also found that coupling a thin aluminium oxide with an interfacial silicon oxide and controlling the oxide thickness can significantly improve the photovoltage of an MIS junction photoanode.

4.
Nat Commun ; 8: 15968, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28660883

RESUMEN

Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal-insulator-semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal-insulator-semiconductor photoanodes by showing over 200 h of operational stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA