Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Acta Biomater ; 105: 87-96, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31978622

RESUMEN

The development of tough hydrogels is an essential but challenging topic in biomaterials research that has received much attention over the past years. By the combinatorial synthesis of polymer networks and hydrogels based on prepolymers with different properties, new materials with widely varying characteristics and unexpected properties may be identified. In this paper, we report on the properties of combinatorial poly(urethane-isocyanurate) (PUI) type polymer networks that were synthesized by the trimerization of mixtures of NCO-functionalized poly(ethylene glycol) (PEG), poly(propylene gylcol) (PPG), poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) prepolymers in solution. The resulting polymer networks showed widely varying material properties. Combinatorial PUI networks containing at least one hydrophilic PEG component showed high water uptakes of >100 wt%. The resulting hydrogels demonstrated elastic moduli of up to 10.1 MPa, ultimate tensile strengths of up to 9.8 MPa, elongation at break values of up to 624.0% and toughness values of up to 53.4 MJ m-3. These values are exceptionally high and show that combinatorial PUI hydrogels are among the toughest hydrogels reported in the literature. Also, the simple two-step synthesis and wide range of suitable starting materials make this synthesis method more versatile and widely applicable than the existing methods for synthesizing tough hydrogels. An important finding of this work is that the presence of a hydrophobic network component significantly enhances the toughness and tensile strength of the combinatorial PUI hydrogels in the hydrated state. This enhancement is the largest when the hydrophobic network component is crystallizable in nature. In fact, the PUI hydrogels containing a crystallizable hydrophobic network component are shown to be semi-crystalline in the water-swollen state. Due to their high toughness values in the water-swollen state together with their water uptake values, elastic moduli and ultimate tensile strengths, the developed hydrogels are expected to be promising materials for biomedical coating- and adhesive applications, as well as for tissue-engineering. STATEMENT OF SIGNIFICANCE: The development of tough hydrogels is a challenging topic that has received much attention over the past years. At present, double network type hydrogels are considered state-of-the-art in the field, demonstrating toughness values of several tens of MJ m-3. However, in terms of ease and versatility of the synthesis method, the possibilities are limited using a double network approach. In this work, we present combinatorial poly(urethane-isocyanurate) type polymer networks and hydrogels, synthesized by the trimerization of mixtures of NCO-functionalized prepolymers. The resulting hydrogels demonstrate exceptionally high toughness values of up to 53 MJ m-3, while the synthesis method is versatile and widely applicable. This new class of hydrogels is therefore considered highly promising in the future development of load-bearing biomaterials.


Asunto(s)
Hidrogeles/síntesis química , Polímeros/síntesis química , Poliuretanos/química , Poliuretanos/síntesis química , Triazinas/síntesis química , Tecnología Biomédica , Hidrogeles/química , Polímeros/química , Espectroscopía de Protones por Resonancia Magnética , Triazinas/química
3.
Clin Exp Immunol ; 200(1): 1-11, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31853959

RESUMEN

Carbamylation is a post-translational modification that can be detected on a range of proteins, including immunoglobulin (Ig)G, in several clinical conditions. Carbamylated IgG (ca-IgG) was reported to lose its capacity to trigger complement activation, but the mechanism remains unclear. Because C1q binds with high affinity to hexameric IgG, we analyzed whether carbamylation of IgG affects binding of C1q, hexamerization and complement-dependent cytotoxicity (CDC). Synovial tissues of rheumatoid arthritis (RA) patients were analyzed for the presence of ca-IgG in vivo. Synovial tissues from RA patients were analyzed for the presence of ca-IgG using mass spectrometry (MS). Monomeric or hexameric antibodies were carbamylated in vitro and quality in solution was controlled. The capacity of ca-IgG to activate complement was analyzed in enzyme-linked immunosorbent (ELISAs) and cellular CDC assays. Using MS, we identified ca-IgG to be present in the joints of RA patients. Using in vitro carbamylated antibodies, we observed that ca-IgG lost its capacity to activate complement in both solid-phase and CDC assays. Mixing ca-IgG with non-modified IgG did not result in effective inhibition of complement activation by ca-IgG. Carbamylation of both monomeric IgG and preformed hexameric IgG greatly impaired the capacity to trigger complement activation. Furthermore, upon carbamylation, the preformed hexameric IgG dissociated into monomeric IgG in solution, indicating that carbamylation influences both hexamerization and C1q binding. In conclusion, ca-IgG can be detected in vivo and has a strongly reduced capacity to activate complement which is, in part, mediated through a reduced ability to form hexamers.


Asunto(s)
Artritis Reumatoide/inmunología , Activación de Complemento/inmunología , Complemento C1q/inmunología , Inmunoglobulina G/inmunología , Anciano , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Artritis Reumatoide/metabolismo , Línea Celular Tumoral , Complemento C1q/metabolismo , Pruebas Inmunológicas de Citotoxicidad , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Carbamilación de Proteína/inmunología , Multimerización de Proteína/inmunología , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Membrana Sinovial/inmunología , Membrana Sinovial/metabolismo
4.
J Colloid Interface Sci ; 352(2): 265-77, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20851405

RESUMEN

We have investigated the phenomenon of flow-induced aggregation in highly concentrated colloidal dispersions exposed to strongly converging flow fields. This phenomenon is relevant not only for classical technical operations like coating, pumping or filtration, but also for the application of concentrated suspensions in upcoming processing technologies based on microfluidic devices. A ring-slit device (gap height 10-25 µm), which allows for a variation of flow kinematics in a wide range, has been developed in order to investigate this phenomenon. Various polymer dispersions with different particle surface properties have been used as model systems. Our experiments exclude, that channel clogging is due to retention of pre-existing aggregates, fouling or hydrodynamic bridging. Instead, we demonstrate that clogging of the microchannel is induced by hetero-coagulation between primary colloidal particles and micron-sized impurities present at concentrations on the order of 100-1000 ppm. Clogging can occur even if the diameter of these impurities is less than a tenth of the gap height. Aggregation takes place in the converging flow field at the channel entrance, but not in the shear field within the slit. It can be suppressed by appropriate stabilization of the primary particles.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nanopartículas/química , Coloides/química , Tamaño de la Partícula , Reología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...