Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(1): 1486-1492, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33370089

RESUMEN

This work reports the development of a mechanochemistry activated covalent conjugation (MACC) reaction that shows areas of interfacial failure in soft hydrogels. Hydrogels are prone to delamination from rigid substrates due to the competition between swelling and adhesion, which can lead to bonding failure in a mechanism similar to crack propagation in harder materials. In this work, reductive amination was shown to occur when a ketone-bearing fluorescein derivative was bonded to an amine-functionalized hydrogel, as both of these moieties were found to be necessary for covalent conjugation into the gel network. For thin, circular polyacrylamide hydrogels, wrinkle patterns and regions of subsequent delamination at the edge of the gel were found to be selectively tagged by the dye. This reaction was then used to explore the effect of gel properties on patterns of interfacial failure. As cross-linker loading increased, the propagation of the delamination front and the area fraction of delamination were both found to increase, as shown by fluorescence images of gels. Increasing the thickness of the gel increased the fraction of delaminated area but did not change its propagation toward the center of the gel. This MACC reaction shows how mechanochemical reactions can be used for fluorescence tagging without incorporating mechanophores into the polymer gel matrix.

2.
ACS Nano ; 14(10): 13619-13628, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32961057

RESUMEN

While tattooable nanotechnology for in-skin sensing and communication has been a popular concept in science fiction since the 1990s, the first tattooable intradermal nanosensors have only emerged in the past few years, and none have been demonstrated in human skin. We developed a photochromic tattoo that serves as an intradermal ultraviolet (UV) radiometer that provides naked-eye feedback about UV exposure in real time. These small tattoos, or "solar freckles", comprise dermally implanted colorimetric UV sensors in the form of nanoencapsulated leuco dyes that become more blue in color with increasing UV irradiance. We demonstrate the tattoos' functionality for both quantitative and naked-eye UV sensing in porcine skin ex vivo, as well as in human skin in vivo. Solar freckles offer an alternative and complementary approach to self-monitoring UV exposure for the sake of skin cancer prevention. Activated solar freckles provide a visual reminder to protect the skin, and their color disappears rapidly upon removal of UV exposure or application of topical sunscreen. The sensors are implanted in a minimally invasive procedure that lasts only a few seconds, yet remain functional for months to years. These semipermanent tattoos provide an early proof-of-concept for long-term intradermal sensing nanomaterials that provide users with biomedically relevant information in the form of an observable color change.


Asunto(s)
Melanosis , Tatuaje , Humanos , Radiometría , Piel , Luz Solar , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...