Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3720, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697958

RESUMEN

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517259

RESUMEN

The time- and angle-resolved photoemission spectroscopy (trARPES) allows for direct mapping of the electronic band structure and its dynamic response on femtosecond timescales. Here, we present a new ARPES system, powered by a new fiber-based femtosecond light source in the vacuum ultraviolet range, accessing the complete first Brillouin zone for most materials. We present trARPES data on Au(111), polycrystalline Au, Bi2Se3, and TaTe2, demonstrating an energy resolution of 21 meV with a time resolution of <360 fs, at a high repetition rate of 1 MHz. The system is integrated with an extreme ultraviolet high harmonic generation beamline, enabling an excellent tunability of the time-bandwidth resolution.

3.
Nano Lett ; 24(1): 82-88, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109843

RESUMEN

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

4.
Nat Commun ; 14(1): 6127, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779120

RESUMEN

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

5.
Nat Commun ; 13(1): 6396, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302853

RESUMEN

Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.

6.
Sustainability ; 14(10): 5999, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35909454

RESUMEN

We developed a Bayesian spline model for real-time mass concentrations of particulate matter (PM10, PM2.5, PM1, and PM0.3) measured simultaneously in the personal breathing zone of Parisian subway workers. The measurements were performed by GRIMM, a gravimetric method, and DiSCmini during the workers' work shifts over two consecutive weeks. The measured PM concentrations were analyzed with respect to the working environment, the underground station, and any specific events that occurred during the work shift. Overall, PM0.3 concentrations were more than an order of magnitude lower compared to the other PM concentrations and showed the highest temporal variation. The PM2.5 levels raised the highest exposure concern: 15 stations out of 37 had higher mass concentrations compared to the reference. Station PM levels were not correlated with the annual number of passengers entering the station, the year of station opening or renovation, or the number of platforms and tracks. The correlation with the number of station entrances was consistently negative for all PM sizes, whereas the number of correspondence concourses was negatively correlated with PM0.3 and PM10 levels and positively correlated with PM1 and PM2.5 levels. The highest PM10 exposure was observed for the station platform, followed by the subway cabin and train, while ticket counters had the highest PM0.3, PM1, and PM2.5 mass concentrations. We further found that compared to gravimetric and DiSCmini measurements, GRIMM results showed some discrepancies, with an underestimation of exposure levels. Therefore, we suggest using GRIMM, calibrated by gravimetric methods, for PM sizes above 1µm, and DiSCmini for sizes below 700 nm.

7.
Adv Sci (Weinh) ; 8(22): e2100602, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34532983

RESUMEN

The 2-dimensional electron gas (2DEG) found at the surface of SrTiO3 and related interfaces has attracted significant attention as a promising basis for oxide electronics. In order to utilize its full potential, the response of this 2DEG to structural changes and surface modification must be understood in detail. Here, a study of the detailed electronic structure evolution of the 2DEG as a function of sample temperature and surface step density is presented. By comparing the experimental results with ab initio calculations, it is shown that local structure relaxations cause a metal-insulator transition of the system around 135 K. This study presents a new and simple way of tuning the 2DEG via surface vicinality and identifies how the operation of prospective devices will respond to changes in temperature.

8.
Phys Rev Lett ; 126(20): 206403, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110214

RESUMEN

Ferroelectric α-GeTe is unveiled to exhibit an intriguing multiple nontrivial topology of the electronic band structure due to the existence of triple-point and type-II Weyl fermions, which goes well beyond the giant Rashba spin splitting controlled by external fields as previously reported. Using spin- and angle-resolved photoemission spectroscopy combined with ab initio density functional theory, the unique spin texture around the triple point caused by the crossing of one spin-degenerate and two spin-split bands along the ferroelectric crystal axis is derived. This consistently reveals spin winding numbers that are coupled with time-reversal symmetry and Lorentz invariance, which are found to be equal for both triple-point pairs in the Brillouin zone. The rich manifold of effects opens up promising perspectives for studying nontrivial phenomena and multicomponent fermions in condensed matter systems.

9.
Phys Rev Lett ; 121(15): 156401, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30362784

RESUMEN

The semimetal MoTe_{2} is studied by spin- and angle-resolved photoemission spectroscopy across the centrosymmetry-breaking structural transition temperature of the bulk. A three-dimensional spin-texture is observed in the bulk Fermi surface in the low temperature, noncentrosymmetric phase that is consistent with first-principles calculations. The spin texture and two types of surface Fermi arc are not completely suppressed above the bulk transition temperature. The lifetimes of quasiparticles forming the Fermi arcs depend on thermal history and lengthen considerably upon cooling toward the bulk structural transition. The results indicate that a new form of polar instability exists near the surface when the bulk is largely in a centrosymmetric phase.

10.
Sci Rep ; 7(1): 695, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386124

RESUMEN

The surface of a material is not only a window into its bulk physical properties, but also hosts unique phenomena important for understanding the properties of a solid as a whole. Surface sensitive techniques, like ARPES (Angle-resolved photoemission spectroscopy), STM (Scanning tunneling microscopy), AFM (Atomic force microscopy), pump-probe optical measurements etc. require flat, clean surfaces. These can be obtained by cleaving, which is usually possible for layered materials. Such measurements have proven their worth by providing valuable information about cuprate superconductors, graphene, transition metal dichalcogenides, topological insulators and many other novel materials. Unfortunately, this was so far not the case for the cubic, organo-metallic photovoltaic perovskite which morsels during the cleavage. Here we show a method which results in flat, clean surfaces of CH3NH3PbBr3 which allows surface sensitive measurements, badly needed for the understanding and further engineering of this material family.

11.
Phys Rev Lett ; 118(6): 067402, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234536

RESUMEN

After photon absorption, electrons from a dispersive band of a solid require a finite time in the photoemission process before being photoemitted as free particles, in line with recent attosecond-resolved photoemission experiments. According to the Eisenbud-Wigner-Smith model, the time delay is due to a phase shift of different transitions that occur in the process. Such a phase shift is also at the origin of the angular dependent spin polarization of the photoelectron beam, observable in spin degenerate systems without angular momentum transfer by the incident photon. We propose a semiquantitative model which permits us to relate spin and time scales in photoemission from condensed matter targets and to better understand spin- and angle-resolved photoemission spectroscopy (SARPES) experiments on spin degenerate systems. We also present the first experimental determination by SARPES of this time delay in a dispersive band, which is found to be greater than 26 as for electrons emitted from the sp-bulk band of the model system Cu(111).

12.
J Synchrotron Radiat ; 22(3): 708-16, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931087

RESUMEN

The concept of a multichannel electron spin detector based on optical imaging principles and Mott scattering (iMott) is presented. A multichannel electron image produced by a standard angle-resolving (photo) electron analyzer or microscope is re-imaged by an electrostatic lens at an accelerating voltage of 40 kV onto the Au target. Quasi-elastic electrons bearing spin asymmetry of the Mott scattering are imaged by magnetic lenses onto position-sensitive electron CCDs whose differential signals yield the multichannel spin asymmetry image. Fundamental advantages of this concept include acceptance of inherently divergent electron sources from the electron analyzer or microscope focal plane as well as small aberrations achieved by virtue of high accelerating voltages, as demonstrated by extensive ray-tracing analysis. The efficiency gain compared with the single-channel Mott detector can be a factor of more than 10(4) which opens new prospects of spin-resolved spectroscopies in application not only to standard bulk and surface systems (Rashba effect, topological insulators, etc.) but also to buried heterostructures. The simultaneous spin detection combined with fast CCD readout enables efficient use of the iMott detectors at X-ray free-electron laser facilities.

13.
Nat Commun ; 6: 6870, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25882717

RESUMEN

The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.

14.
J Phys Condens Matter ; 26(28): 285501, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24945465

RESUMEN

The physical and electronic properties of the Ir modified Si(1 1 1) surface have been investigated with the help of angle resolved photoemission spectroscopy and density functional theory. The surface consists of Ir-ring clusters that form a [Formula: see text]reconstruction. A comparison between the measured and calculated band structure of the system reveals that the dispersions of the projected bulk states and the states originating from [Formula: see text] domains are heavily modified due to Umklapp scattering from the surface Brillouin zone. Density of states calculations show that Ir-ring clusters contribute to the states in the vicinity of the Fermi level.


Asunto(s)
Iridio/química , Modelos Químicos , Silicio/química , Simulación por Computador , Luz , Dispersión de Radiación , Propiedades de Superficie , Sincrotrones
15.
Phys Rev Lett ; 112(5): 057601, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24580629

RESUMEN

By means of spin- and angle-resolved photoelectron spectroscopy we studied the spin structure of thin films of the topological insulator Bi2Se3 grown on InP(111). For thicknesses below six quintuple layers the spin-polarized metallic topological surface states interact with each other via quantum tunneling and a gap opens. Our measurements show that the resulting surface states can be described by massive Dirac cones which are split in a Rashba-like manner due to the substrate induced inversion asymmetry. The inner and the outer Rashba branches have distinct localization in the top and the bottom part of the film, whereas the band apices are delocalized throughout the entire film. Supported by calculations, our observations help in the understanding of the evolution of the surface states at the topological phase transition and provide the groundwork for the realization of two-dimensional spintronic devices based on topological semiconductors.

16.
Sci Rep ; 3: 1963, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23752474

RESUMEN

Spin-orbit interaction (SOI) in low-dimensional systems results in the fascinating property of spin-momentum locking. In a Rashba system the inversion symmetry normal to the plane of a two-dimensional (2D) electron gas is broken, generating a Fermi surface spin texture reminiscent of spin vortices of different radii which can be exploited in spin-based devices. Crucial for any application is the possibility to tune the momentum splitting through an external parameter. Here we show that in Pb quantum well states (QWS) the Rashba splitting depends on the Si substrate doping. Our results imply a doping dependence of the Schottky barrier which shifts the Si valence band relative to the QWS. A similar shift can be achieved by an external gate voltage or ultra-short laser pulses, opening up the possibility of terahertz spintronics.

17.
Phys Rev Lett ; 109(11): 116403, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23005655

RESUMEN

BiTeI has a layered and noncentrosymmetric structure where strong spin-orbit interaction leads to a giant Rashba spin splitting in the bulk bands. We present direct measurements of the bulk band structure obtained with soft x-ray angle-resolved photoemission (ARPES), revealing the three-dimensional Fermi surface. The observed spindle torus shape bears the potential for a topological transition in the bulk by hole doping. Moreover, the bulk electronic structure is clearly disentangled from the two-dimensional surface electronic structure by means of high-resolution and spin-resolved ARPES measurements in the ultraviolet regime. All findings are supported by ab initio calculations.

18.
J Phys Condens Matter ; 24(17): 173001, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22480989

RESUMEN

The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein.The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission.


Asunto(s)
Espectroscopía de Fotoelectrones/métodos , Algoritmos , Cobre/química , Electrones , Diseño de Equipo , Luz , Magnetismo , Fotoquímica/métodos , Fotones , Probabilidad , Detección de Spin/métodos
19.
Nat Commun ; 3: 635, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22273673

RESUMEN

A topological insulator is a state of quantum matter that, while being an insulator in the bulk, hosts topologically protected electronic states at the surface. These states open the opportunity to realize a number of new applications in spintronics and quantum computing. To take advantage of their peculiar properties, topological insulators should be tuned in such a way that ideal and isolated Dirac cones are located within the topological transport regime without any scattering channels. Here we report ab-initio calculations, spin-resolved photoemission and scanning tunnelling microscopy experiments that demonstrate that the conducting states can effectively tuned within the concept of a homologous series that is formed by the binary chalcogenides (Bi(2)Te(3), Bi(2)Se(3) and Sb(2)Te(3)), with the addition of a third element of the group IV.

20.
J Phys Condens Matter ; 23(7): 072207, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21411877

RESUMEN

Using a three-dimensional spin polarimeter we have gathered evidence for the interference of spin states in photoemission from the surface alloy Sb/Ag(111). This system features a small Rashba-type spin splitting of a size comparable to the momentum broadening of the quasiparticles, thus causing an intrinsic overlap between states with orthogonal spinors. Besides a small spin polarization caused by the spin splitting, we observe a large spin polarization component in the plane normal to the quantization axis of the Rashba effect. Strongly suggestive of coherent spin rotation, this effect is largely independent of the photon energy and photon polarization.


Asunto(s)
Aleaciones/química , Antimonio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Plata/química , Luz , Ensayo de Materiales , Tamaño de la Partícula , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...