Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(2): 1462-1464, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38095231

RESUMEN

Correction for 'Extracting accurate information from triplet-triplet annihilation upconversion data with a mass-conserving kinetic model' by Abhishek Kalpattu et al., Phys. Chem. Chem. Phys., 2022, 24, 28174-28190, https://doi.org/10.1039/D2CP03986A.

2.
J Am Chem Soc ; 144(47): 21568-21575, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36394978

RESUMEN

Natural photosynthesis uses an array of molecular structures in a multiphoton Z-scheme for the conversion of light energy into chemical bonds (i.e., solar fuels). Here, we show that upon excitation of both a molecular photocatalyst (PC) and a substituted naphthol (ROH) in the presence of a sacrificial electron donor and proton source, we achieve photocatalytic synthesis of H2. Data support a multiphoton mechanism that is catalytic with respect to both PC and ROH. The use of a naphthol molecule as both a light absorber and H2 producing catalyst is a unique motif for Z-scheme systems. This molecular Z-scheme can drive a reaction that is uphill by 511 kJ mol-1 and circumvents the high-energy constraints associated with the reduction of weak acids in their ground state, thus offering a new paradigm for the production of solar fuels.


Asunto(s)
Naftoles , Fotosíntesis , Catálisis , Protones
3.
Phys Chem Chem Phys ; 24(46): 28174-28190, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36399042

RESUMEN

Triplet-triplet annihilation upconversion (TTA-UC) is a process that shows promise for applications such as energy-harvesting and light-generation technologies. The irradiance dependent performance of TTA-UC systems is typically gauged using a graphical analysis, rather than a detailed model. Additionally, kinetic models for TTA-UC rarely incorporate mass conservation, which is a phenomenon that can have important consequences under experimentally relevant conditions. We present an analytical, mass-conserving kinetic model for TTA-UC, and demonstrate that the mass-conservation constraint cannot generally be ignored. This model accounts for saturation in TTA-UC data. Saturation complicates the interpretation of the threshold irradiance Ith, a popular performance metric. We propose two alternative figures of merit for overall performance. Finally, we show that our model can robustly fit experimental data from a wide variety of sensitized TTA-UC systems, enabling the direct and accurate determination of Ith and of our proposed performance metrics. We employ this fitting procedure to benchmark and compare these metrics, using data from the literature.

4.
Inorg Chem ; 58(1): 228-233, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30569703

RESUMEN

The pressure behavior of crystalline Cs2UO2Cl4 has been explored using a diamond anvil cell. The uranyl fluorescence intensity decreases dramatically with increasing pressure. Using the O-U-O symmetric stretching frequency, an apparent linear decrease in bond length with increasing pressure was observed. A linear decrease in fluorescence intensity with increasing pressure was attributed to a large growth in the nonradiative relaxation, likely attributed to increased relaxation through phonon modes. Quantum theory of atoms in molecules calculations and ab initio wave function methods (CASSCF) support the U≡O bond in UO22+ being highly sensitive to the bond distance, but negligibly affected by the U-Cl bond length.

5.
J Phys Chem Lett ; 9(19): 5810-5821, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30230841

RESUMEN

Molecular photon upconversion via triplet-triplet annihilation (TTA-UC) is an intriguing strategy to increase solar cell efficiencies and surpass the Shockley-Quiesser (SQ) limit. In this Perspective, we recount our group's efforts to harness TTA-UC by directly incorporating metal ion linked multilayers of acceptor and sensitizer molecules into an organic-inorganic hybrid solar cell architecture. These self-assembled multilayers facilitate both upconverted emission and photocurrent generation from the upconverted state with a record contribution of 0.158 mA cm-2 under 1 sun solar flux. We recount the progression toward this record and the mechanistic insights learned along the way, summarize the rate- and efficiency-limiting events, and outline improvements that must be made to produce a viable TTA-UC solar cell that can surpass the SQ limit. We also discuss the potential impact that efficient TTA-UC and photocurrent generation could have on existing record solar cells.

6.
Inorg Chem ; 57(20): 12969-12975, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30265525

RESUMEN

M(TpyNO2)(NO3)3(H2O)·THF (M = La, Nd, Sm, Eu, Tb, Am; TpyNO2 = 4'-nitrophenyl terpyridyl) have been prepared from the reaction of M(NO3)3· nH2O with TpyNO2 in THF. Structural analysis shows that the metal centers are 10-coordinate, providing the first example of AmIII with this coordination number. Further spectroscopic and theoretical evaluation of these complexes reveals utilization of the 5f orbitals in bonding in the AmIII complex. Comparison of Nd-L, Eu-L, and Am-L bond distances demonstrates that some caution should be taken in comparing EuIII versus AmIII in extraction experiments.

7.
Chem Soc Rev ; 47(1): 104-148, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28936536

RESUMEN

High surface area metal oxides offer a unique substrate for the assembly of multiple molecular components at an interface. The choice of molecules, metal oxide, and the nature of the assembly method can have a profound influence on the mechanism, rate, and efficiency of photoinduced energy and electron transfer events at the interface. Owing to their diversity and high level of control, these interfacial assemblies are of interest for numerous applications including solar energy conversion, photoelectrosynthesis, photo-writable memory, and more. Although these assemblies are generated with very different goals in mind, they rely on similar surface binding motifs and molecular structure-property relationships. Therefore, the goal of this review is to summarize the various strategies (i.e. co-deposition, axial coordination, metal ion linkages, electrostatics, host-guest interactions, etc.) for assembling chromophores, hosts, electron donors/acceptors, and insulating co-adsorbent molecules on mesoporous metal oxide substrates. The assembly, synthesis, and characterization, as well as subsequent photoinduced events (i.e. cross-surface energy/electron transfer, interchromophore energy transfer, electron injection, and others) are discussed for the various assembly strategies.

8.
ACS Appl Mater Interfaces ; 9(51): 44579-44583, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206440

RESUMEN

Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C4N2H14Br)4SnBrxI6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBrxI6-x4-, x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C4N2H14Br-. The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl10O17:Eu2+) can exhibit high color rendering indexes of up to 85.

9.
Inorg Chem ; 55(17): 8564-9, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27500886

RESUMEN

We report precise manipulation of the potential-energy surfaces (PESs) of a series of butterfly-like pyrazolate-bridged platinum binuclear complexes, by synthetic control of the electronic structure of the cyclometallating ligand and the steric bulkiness of the pyrazolate bridging ligand. Color tuning of dual emission from blue/red, to green/red and red/deep red were achieved for these phosphorescent molecular butterflies, which have two well-controlled energy minima on the PESs. The environmentally dependent photoluminescence of these molecular butterflies enabled their application as self-referenced luminescent viscosity sensor.

10.
ACS Nano ; 10(2): 1795-801, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26713348

RESUMEN

Printed organometal halide perovskite light-emitting diodes (LEDs) are reported that have indium tin oxide (ITO) or carbon nanotubes (CNTs) as the transparent anode, a printed composite film consisting of methylammonium lead tribromide (Br-Pero) and poly(ethylene oxide) (PEO) as the emissive layer, and printed silver nanowires as the cathode. The fabrication can be carried out in ambient air without humidity control. The devices on ITO/glass have a low turn-on voltage of 2.6 V, a maximum luminance intensity of 21014 cd m(-2), and a maximum external quantum efficiency (EQE) of 1.1%, surpassing previous reported perovskite LEDs. The devices on CNTs/polymer were able to be strained to 5 mm radius of curvature without affecting device properties.

11.
J Phys Chem Lett ; 6(22): 4510-7, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26535617

RESUMEN

Molecular photon upconversion via triplet-triplet annihilation (TTA-UC), combining two or more low energy photons to generate a higher energy excited state, is an intriguing strategy to surpass the maximum efficiency for a single junction solar cell (<34%). Here, we introduce self-assembled bilayers on metal oxide surfaces as a strategy to facilitate TTA-UC emission and demonstrate direct charge separation of the upconverted state. A 3-fold enhancement in transient photocurrent is achieved at light intensities as low as two equivalent suns. This strategy is simple, modular and offers unprecedented geometric and spatial control of the donor-acceptor interactions at an interface. These results are a key stepping stone toward the realization of an efficient TTA-UC solar cell that can circumvent the Shockley-Queisser limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...