Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38586056

RESUMEN

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that normally terminates at PWAR1 in non-neurons. qRTPCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11,834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.

2.
Phys Eng Sci Med ; 46(2): 575-583, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36806158

RESUMEN

Anthropomorphic phantoms with tissue equivalency are required in radiotherapy for quality assurance of imaging and dosimetric processes used in radiotherapy treatments. Commercial phantoms are expensive and provide limited approximation to patient geometry and tissue equivalency. In this study, a 5 cm thick anthropomorphic thoracic slab phantom was designed and 3D printed using models exported from a CT dataset to demonstrate the feasibility of manufacturing anthropomorphic 3D printed phantoms onsite in a clinical radiotherapy department. The 3D printed phantom was manufactured with polylactic acid with an in-fill density of 80% to simulate tissue density and 26% to simulate lung density. A common radio-opacifier, barium sulfate (BaSO4), was added 6% w/w to an epoxy resin mixture to simulate similar HU numbers for bone equivalency. A half-cylindrical shape was cropped away from the spine region to allow insertion of the bone equivalent mixture. Two Gafchromic™ EBT3 film strips were inserted into the 3D printed phantom to measure the delivery of two stereotactic radiotherapy plans targeting lung and bone lesions respectively. Results were analysed within SNC Patient with a low dose threshold of 10% and a gamma criterion of 3%/2 mm and 5%/1 mm. The resulting gamma pass rate across both criterions for lung and bone were ≥ 95% and approximately 85% respectively. Results shows that a cost-effective anthropomorphic 3D printed phantom with realistic heterogeneity simulation can be fabricated in departments with access a suitable 3D printer, which can be used for performing commissioning and quality assurance for stereotactic type radiotherapy to lesions in the presence of heterogeneity.


Asunto(s)
Radiocirugia , Humanos , Fantasmas de Imagen , Radiometría , Tórax/diagnóstico por imagen , Impresión Tridimensional
3.
J Gerontol A Biol Sci Med Sci ; 68(10): 1181-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23525481

RESUMEN

Myostatin is a highly conserved member of the transforming growth factor-ß ligand family known to regulate muscle growth via activation of activin receptors. A fusion protein consisting of the extracellular ligand-binding domain of activin type IIB receptor with the Fc portion of human immunoglobulin G (ActRIIB-Fc) was used to inhibit signaling through this pathway. Here, we study the effects of this fusion protein in adult, 18-month-old, and orchidectomized mice. Significant muscle growth and enhanced muscle function were observed in adult mice treated for 3 days with ActRIIB-Fc. The ActRIIB-Fc-treated mice had enhanced fast fatigable muscle function, with only minor enhancement of fatigue-resistant fiber function. The ActRIIB-Fc-treated 18-month-old mice and orchidectomized mice showed significantly improved muscle function. Treatment with ActRIIB-Fc also increased bone mineral density and serum levels of a marker of bone formation. These observations highlight the potential of targeting ActRIIB receptor to treat age-related and hypogonadism-associated musculoskeletal degeneration.


Asunto(s)
Receptores de Activinas Tipo II/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Densidad Ósea/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Receptores de Activinas Tipo II/metabolismo , Animales , Biomarcadores/sangre , Densidad Ósea/fisiología , Línea Celular , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Miostatina/metabolismo , Orquiectomía , Fragmentos de Péptidos/sangre , Procolágeno/sangre , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Sarcopenia/tratamiento farmacológico , Sarcopenia/patología , Sarcopenia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...