Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(13): 15261-15269, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33745279

RESUMEN

A core-shell approach that utilizes a high-surface-area conducting core and an outer semiconductor shell is exploited here to prepare p-type dye-sensitized solar energy cells that operate with a minimal applied bias. Photocathodes were prepared by coating thin films of nanocrystalline indium tin oxide with a 0.8 nm Al2O3 seeding layer, followed by the chemical growth of nonstoichiometric strontium titanate. Films were annealed and sensitized with either a porphyrin chromophore or a chromophore-catalyst molecular assembly consisting of the porphyrin covalently tethered to the ruthenium complex. The sensitized photoelectrodes produced cathodic photocurrents of up to -315 µA/cm2 under simulated sunlight (AM1.5G, 100 mW/cm2) in aqueous media, pH 5. The photocurrent was increased by the addition of regenerative hole donors to the system, consistent with slow interfacial recombination kinetics, an important property of p-type dye-sensitized electrodes.

2.
ACS Appl Mater Interfaces ; 9(44): 39018-39026, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29035504

RESUMEN

Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO2, and catalyst binding through phosphonate linkage to the TiO2 layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO2 or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.6 or 5.7. The absolute magnitudes of photocurrent changes with the core material, TiO2 spacer layer thickness, or pH, observed photocurrents were 2.5-fold higher in the presence of catalyst. The results of transient absorption measurements and DFT calculations show that electron injection by the photoexcited organic dye is ultrafast promoted by electronic interactions enabled by orientation of the dye's molecular orbitals on the electrode surface. Rapid injection is followed by recombination with the oxidized dye which is 95% complete by 1.5 ns. Although chromophore decomposition limits the efficiency of the DSPEC devices toward O2 production, the flexibility of the strategy presented here offers a new approach to photoanode design.

3.
ACS Appl Mater Interfaces ; 9(32): 26786-26796, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28731676

RESUMEN

The hole-injection and recombination photophysics for NiO sensitized with RuP ([RuII(bpy)2(4,4'-(PO3H2)2-bpy)]2+) are explored. Ultrafast transient absorption (TA) measurements performed with an external electrochemical bias reveal the efficiency for productive hole-injection, that is, quenching of the dye excited state that results in a detectable charge-separated electron-hole pair, is linearly dependent on the electronic occupation of intragap states in the NiO film. Population of these states via a negative applied potential increases the efficiency from 0% to 100%. The results indicate the primary loss mechanism for dye-sensitized NiO is rapid nongeminate recombination enabled by the presence of latent holes in the surface of the NiO film. Our findings suggest a new design paradigm for NiO photocathodes and devices centered on the avoidance of this recombination pathway.

4.
Front Microbiol ; 8: 664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507535

RESUMEN

Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance.

5.
J Am Chem Soc ; 138(40): 13085-13102, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27654634

RESUMEN

The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates high bandgap, nanoparticle oxide semiconductors with the light-absorbing and catalytic properties of designed chromophore-catalyst assemblies. The goals are photoelectrochemical water splitting into hydrogen and oxygen and reduction of CO2 by water to give oxygen and carbon-based fuels. Solar-driven water oxidation occurs at a photoanode and water or CO2 reduction at a cathode or photocathode initiated by molecular-level light absorption. Light absorption is followed by electron or hole injection, catalyst activation, and catalytic water oxidation or water/CO2 reduction. The DSPEC is of recent origin but significant progress has been made. It has the potential to play an important role in our energy future.

6.
J Phys Chem B ; 120(32): 7937-48, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27433946

RESUMEN

Ultrafast energy and electron transfer (EnT and ET, respectively) are characterized in a light-harvesting assembly based on a π-conjugated polymer (poly(fluorene)) functionalized with broadly absorbing pendant organic isoindigo (iI) chromophores using a combination of femtosecond transient absorption spectroscopy and large-scale computer simulation. Photoexcitation of the π-conjugated polymer leads to near-unity quenching of the excitation through a combination of EnT and ET to the iI pendants. The excited pendants formed by EnT rapidly relax within 30 ps, whereas recombination of the charge-separated state formed following ET occurs within 1200 ps. A computer model of the excited-state processes is developed by combining all-atom molecular dynamics simulations, which provides a molecular-level view of the assembly structure, with a kinetic model that accounts for the multiple excited-state quenching pathways. Direct comparison of the simulations with experimental data reveals that the underlying structure has a dramatic effect on the partitioning between EnT and ET in the polymer assembly, where the distance and orientation of the pendants in relation to the backbone serve to direct the dominant quenching pathway.

7.
ACS Appl Mater Interfaces ; 8(19): 12282-90, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27128813

RESUMEN

Sensitized SrTiO3 films were evaluated as potential photoanodes for dye-sensitized photoelectrosynthesis cells (DSPECs). The SrTiO3 films were grown via pulsed laser deposition (PLD) on a transparent conducting oxide (fluorine-doped tin oxide, FTO) substrate, annealed, and then loaded with zinc(II) 5,10,15-tris(mesityl)-20-[(dihydroxyphosphoryl)phenyl] porphyrin (MPZnP). When paired with a platinum wire counter electrode and an Ag/AgCl reference electrode these sensitized films exhibited photocurrent densities on the order of 350 nA/cm(2) under 0 V applied bias conditions versus a normal hydrogen electrode (NHE) and 75 mW/cm(2) illumination at a wavelength of 445 nm. The conditions of the post-deposition annealing step-namely, a high-temperature reducing atmosphere-proved to be the most important growth parameters for increasing photocurrent in these electrodes.

8.
J Am Chem Soc ; 138(13): 4426-38, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26974040

RESUMEN

Interfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.1 M perchloric acid (HClO4(aq)) to be tuned from -0.69 to -1.03 V vs NHE. Each dye is excited by a 200 fs pulse of light in the visible region of the spectrum and probed with a time-delayed supercontiuum pulse (350-800 nm). Decay of the MLCT excited-state absorption at 376 nm is observed without loss of the ground-state bleach, which is a clear signature of electron injection and formation of the oxidized dye. The dye-dependent decays are biphasic with time constants in the 3-30 and 30-500 ps range. The slower injection rate constant for each dye is exponentially distributed relative to E(+/)*. The correlation between the exponentially diminishing density of TiO2 sub-band acceptor levels and injection rate is well described using Marcus-Gerischer theory, with the slower decay components being assigned to injection from the thermally equilibrated state and the faster components corresponding to injection from higher energy states within the (3)MLCT manifold. These results and detailed analyses incorporating molecular photophysics and semiconductor density of states measurements indicate that the multiexponential behavior that is often observed in interfacial injection studies is not due to sample heterogeneity. Rather, this work shows that the kinetic heterogeneity results from competition between excited-state relaxation and injection as the photoexcited dye relaxes through the (3)MLCT manifold to the thermally equilibrated state, underscoring the potential for a simple kinetic model to reproduce the complex kinetic behavior often observed at the interface of mesoporous metal oxide materials.

9.
J Phys Chem Lett ; 5(13): 2312-9, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26279552

RESUMEN

Singlet fission, in which an initially excited singlet state spontaneously splits into a pair of triplet excitons, is a process that can potentially boost the efficiency of solar energy conversion. The separate electronic bands in organic semiconductors make them especially useful for dividing a high-energy singlet exciton into a pair of lower-energy triplet excitons. Recent experiments illustrate the role of spin coherence in fission, while kinetic models are used to describe how triplet and singlet states interact on longer time scales. Despite insights gained from recent experiments, the detailed structure and dynamics of the electronic states involved in the initial step of singlet fission remain active areas of investigation. On longer time scales, finding ways to efficiently harvest the triplet excitons will be an important challenge for making devices based on this phenomenon. A full understanding of singlet fission requires consideration of a sequence of photophysical events (decoherence, relaxation, and diffusion) occurring on different time scales.

10.
J Am Chem Soc ; 135(46): 17278-81, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24171495

RESUMEN

The dynamics of singlet fission (SF) are studied in monoclinic and orthorhombic crystals of 1,6-diphenyl-1,3,5-hexatriene. Picosecond time-resolved fluorescence measurements and the presence of a strong magnetic field effect indicate that up to 90% of the initially excited singlets undergo SF in both forms. The initial SF and subsequent triplet pair dissociation rates are found to be more rapid in the monoclinic crystal by factors of 1.5 and 3.5, respectively. These results provide clear evidence that molecular organization affects the rates of triplet pair formation and separation, both important parameters for determining the ultimate utility of a SF material.

11.
Phys Chem Chem Phys ; 15(5): 1488-96, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23235390

RESUMEN

The spectroscopic and photocatalytic properties of a series of Au@TiO(2) core-shell nanostructures are characterized. The crystallinity of the TiO(2) shells was varied by changing the etching and calcination conditions. Measurements of the photoluminescence, transient absorption, and H(2) production rate permit us to look for correlations between the spectroscopic and catalytic behaviors. We found that there is a strong effect of crystallinity on the H(2) production rate and also the stretched exponential lifetime of the photoluminescence created by short-wavelength (266 and 300 nm) photoexcitation. As the TiO(2) crystallinity is increased, the photoluminescence lifetime increases from 22 to 140 ps in a 1 ns detection window, while the H(2) production rate increases by a factor of ~4. There is no discernible effect of crystallinity on the photoluminescence dynamics excited at 350 or 430 nm, or on the electronic dynamics measured by femtosecond transient absorption after excitation at 300 nm. We hypothesize that high-energy photons create reactive and emissive charge-separated states in parallel, and that both species are subject to similar electron-hole recombination processes that depend on sample crystallinity. Based on our observations, it can be concluded that the photoluminescence dynamics may be used to evaluate the potential performance of this class of photocatalysts.

13.
J Phys Chem A ; 116(21): 5145-50, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22591413

RESUMEN

Previous studies of solid-state tetracyanobenzene-based donor-acceptor complexes showed that these materials were highly susceptible to both laser and mechanical damage that complicated the analysis of their electron-transfer kinetics. In this paper, we characterize the optical properties of a pyrene/tetracyanoquinodimethane charge-transfer crystal that is much more robust than the tetracyanobenzene compounds. This donor-acceptor complex has a charge-transfer absorption that extends into the near-infrared, rendering the crystal black. We use time-resolved fluorescence and diffuse reflectance transient absorption to study its dynamics after photoexcitation. We show that the initially excited charge-transfer state undergoes a rapid, monoexponential decay with a lifetime of 290 ps at room temperature. There is no evidence for any long-lived intermediate or dark states; therefore, this decay is attributed to charge recombination back to the ground state. Fluorescence lifetime measurements demonstrate that this process becomes temperature-independent below 60 K, indicative of a thermally activated tunneling mechanism. The subnanosecond charge recombination makes this low-band-gap donor-acceptor material a poor candidate for generating long-lived electron-hole pairs.

14.
J Phys Chem A ; 115(9): 1627-33, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21319859

RESUMEN

Charge-transfer molecular crystals are structurally well-defined systems whose electron transfer dynamics can be studied using time-resolved spectroscopy. In this paper, five 1:1 complexes, consisting of 1,2,4,5-tetracyanobenzene as the electron acceptor and durene, 9-methylanthracene, naphthalene, phenanthrene, and pyrene as electron donors, are studied using time-resolved fluorescence and transient absorption in the diffuse reflectance geometry. Two different sample morphologies were studied: single crystals and powders prepared by pulverizing the crystals and diluting them with barium sulfate microparticles. Fluorescence lifetime and transient absorption measurements performed on the crystals and the powders yielded different results. The crystals typically exhibited long-lived monoexponential fluorescence decays, while the powders had shorter multiexponential decays. Exposure of both types of samples to high laser fluence was also shown to induce faster excited state decay dynamics as observed using fluorescence and diffuse reflectance. In addition to the more rapid decays, these molecular crystals exhibited relatively high photobleaching quantum yields on the order of 10(-4). Previous work that interpreted picosecond decays in the transient absorption as evidence for rapid recombination and charge dissociation should be re-evaluated based on the susceptibility of this class of compounds to mechanical and photochemical damage.

15.
J Phys Chem A ; 114(10): 3471-82, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20170138

RESUMEN

Electronic energy transfer plays an important role in many types of organic electronic devices. Forster-type theories of exciton diffusion provide a way to calculate diffusion constants and lengths, but their applicability to amorphous polymer systems must be evaluated. In this paper, the perylenediimide dye Lumogen Red in a poly(methyl methacrylate) host matrix is used to test theories of exciton motion over Lumogen Red concentrations (C(LR)'s) ranging from 1 x 10(-4) to 5 x 10(-2) M. Two experimental quantities are measured. First, time-resolved anisotropy decays in films containing only Lumogen Red provide an estimate of the initial energy transfer rate from the photoexcited molecule. Second, the Lumogen Red lifetime decays in mixed systems where the dyes Malachite Green and Rhodamine 700 act as energy acceptors are measured to estimate the diffusive quenching of the exciton. From the anisotropy measurements, it is found that theory accurately predicts both the C(LR)(-2) concentration dependence of the polarization decay time tau(pol), as well as its magnitude to within 30%. The theory also predicts that the diffusive quenching rate is proportional to C(LR)(alpha), where alpha ranges between 1.00 and 1.33. Experimentally, it is found that alpha = 1.1 +/- 0.2 when Malachite Green is used as an acceptor, and alpha = 1.2 +/- 0.2 when Rhodamine 700 is the acceptor. On the basis of the theory that correctly describes the anisotropy data, the exciton diffusion constant is projected to be 4-9 nm(2)/ns. By use of several different analysis methods for the quenching data, the experimental diffusion constant is found to be in the range of 0.32-1.20 nm(2)/ns. Thus the theory successfully describes the early time anisotropy data but fails to quantitatively describe the quenching experiments which are sensitive to motion on longer time scales. The data are consistent with the idea that orientational and energetic disorder leads to a time-dependent exciton migration rate, suggesting that simple diffusion models cannot accurately describe exciton motion within this system.

16.
J Colloid Interface Sci ; 327(1): 102-7, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18723183

RESUMEN

We report a method for the preparation of silica-coated molecular crystal nanorods. A sol-gel method was used to make silica nanotubes inside anodized alumina templates. The nanotubes were then loaded with 9-anthracene carboxylic acid (9-AC) and solvent annealed to produce silica-coated organic nanorods. The core-shell structure was confirmed using electron microscopy, and the highly crystalline organic core was characterized using powder X-ray diffraction and transmission electron microscopy. The silica-coated 9-AC rods had much improved dispersal properties in aqueous solution, and were also able to undergo reversible bending under UV illumination, as observed previously for uncoated 9-AC rods. This work demonstrates that it is possible to make surface-coated molecular crystal nanorods that retain their useful functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA