Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694330

RESUMEN

The activation of Raf kinases by the small GTPase Ras requires two major sets of phosphorylations. One set lies within the activation loop, and the other lies within the N-terminal acidic region (N region). In the most abundant isoform of Raf, C-Raf, N-region phosphorylations occur on serine 338 (S338) and tyrosine 341 (Y341) and are thought to provide allosteric activation of the Raf dimer. We show that the phosphorylations of these N-region sites does not require C-Raf dimerization, but rather, they precede dimerization. One of these phosphorylations (phospho-Y341) is required for C-Raf dimerization, and this action can be replicated by phosphomimetic mutants both in vivo and in vitro The role of the phosphorylation of Y341 in promoting Raf dimerization is distinct from its well-known function in facilitating S338 phosphorylation. In Ras mutant pancreatic cancer cell lines, the phosphorylation and dimerization of C-Raf are basally elevated. Dimerization is thought to contribute to their elevated growth rate through their activation of the mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase [ERK]) signaling cascade. Blocking the tyrosine phosphorylation of C-Raf with Src family inhibitors blocks growth, basal dimerization, and ERK activation in these cells. We suggest that the kinases mediating C-Raf Y341 phosphorylation are potential candidate drug targets in selected Ras-dependent cancers.

2.
J Biol Chem ; 292(4): 1449-1461, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28003362

RESUMEN

Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1 have been proposed to mediate this activation. Using HEK293 cells as a model system, we have recently shown that both Ras and Rap1 are required for cAMP signaling to ERKs. However, cAMP-dependent Ras signaling to ERKs is transient and rapidly terminated by PKA phosphorylation of the Raf isoforms C-Raf and B-Raf. In contrast, cAMP-dependent Rap1 signaling to ERKs and Rap1 is potentiated by PKA. We show that this is due to sustained binding of B-Raf to Rap1. One of the targets of PKA is Rap1 itself, directly phosphorylating Rap1a on serine 180 and Rap1b on serine 179. We show that these phosphorylations create potential binding sites for the adaptor protein 14-3-3 that links Rap1 to the scaffold protein KSR. These results suggest that Rap1 activation of ERKs requires PKA phosphorylation and KSR binding. Because KSR and B-Raf exist as heterodimers within the cell, this binding also brings B-Raf to Rap1, allowing Rap1 to couple to ERKs through B-Raf binding to Rap1 independently of its Ras-binding domain.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lisina-ARNt Ligasa/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Animales , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Células HEK293 , Humanos , Lisina-ARNt Ligasa/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas de Unión al GTP rap/genética
3.
J Biol Chem ; 291(41): 21584-21595, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27531745

RESUMEN

Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1, have been proposed to mediate this activation, with either Ras or Rap1 acting in distinct cell types. Using Hek293 cells, we show that both Ras and Rap1 are required for cAMP signaling to ERKs. The roles of Ras and Rap1 were distinguished by their mechanism of activation, dependence on the cAMP-dependent protein kinase (PKA), and the magnitude and kinetics of their effects on ERKs. Ras was required for the early portion of ERK activation by cAMP and was activated independently of PKA. Ras activation required the Ras/Rap guanine nucleotide exchange factor (GEF) PDZ-GEF1. Importantly, this action of PDZ-GEF1 was disrupted by mutation within its putative cyclic nucleotide-binding domain within PDZ-GEF1. Compared with Ras, Rap1 activation of ERKs was of longer duration. Rap1 activation was dependent on PKA and required Src family kinases and the Rap1 exchanger C3G. This is the first report of a mechanism for the cooperative actions of Ras and Rap1 in cAMP activation of ERKs. One physiological role for the sustained activation of ERKs is the transcription and stabilization of a range of transcription factors, including c-FOS. We show that the induction of c-FOS by cAMP required both the early and sustained phases of ERK activation, requiring Ras and Rap1, as well as for each of the Raf isoforms, B-Raf and C-Raf.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Unión a Telómeros/metabolismo , Animales , Bovinos , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética
4.
J Biol Chem ; 288(39): 27712-23, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23946483

RESUMEN

The small G protein Rap1 can mediate "inside-out signaling" by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.


Asunto(s)
Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas de Unión al GTP rap1/química , Secuencia de Aminoácidos , Animales , Bovinos , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fosforilación , Transducción de Señal
5.
Int Immunol ; 25(4): 259-69, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23334952

RESUMEN

The duration of signaling through the MAP kinase (or ERK pathway) cascade has been implicated in thymic development, particularly positive and negative selection. In T cells, two isoforms of the MAP kinase kinase kinase Raf function to transmit signals from the T-cell receptor to ERK: C-Raf and B-Raf. In this study, we conditionally ablated B-Raf expression within thymocytes to assess the effects on ERK activation and thymocyte development. The complete loss of B-Raf is accompanied by a dramatic loss of ERK activation in both the double positive (DP) and single positive (SP) thymocytes, as well as peripheral splenocytes. There was a significant decrease in the cellularity of KO thymi, largely due to a loss of pre-selected DP cells, a decrease in DP cells undergoing positive selection, and a defect in SP maturation. B-Raf plays significant roles in survival of DP thymocytes and function of SP cells in the periphery. Surprisingly, we saw no effect of B-Raf deficiency on negative selection of autoreactive SP thymocytes, despite the greatly reduced ERK activation in these cells.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Diferenciación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Supresión Clonal/genética , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/inmunología
6.
Mol Cell Biol ; 30(16): 3956-69, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547757

RESUMEN

Epac1 (exchange protein directly activated by cyclic AMP [cAMP]) couples intracellular cAMP to the activation of Rap1, a Ras family GTPase that regulates cell adhesion, proliferation, and differentiation. Using mass spectrometry, we identified the small G protein Ran and Ran binding protein 2 (RanBP2) as potential binding partners of Epac1. Ran is a small G protein best known for its role in nuclear transport and can be found at the nuclear pore through its interaction with RanBP2. Here we demonstrate that Ran-GTP and Epac1 interact with each other in vivo and in vitro. This binding requires a previously uncharacterized Ras association (RA) domain in Epac1. Surprisingly, the interaction of Epac1 with Ran is necessary for the efficient activation of Rap1 by Epac1. We propose that Ran and RanBP2 anchor Epac1 to the nuclear pore, permitting cAMP signals to activate Rap1 at the nuclear envelope.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Membrana Nuclear/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Secuencia de Bases , AMP Cíclico/metabolismo , Activación Enzimática , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Técnicas In Vitro , Modelos Biológicos , Poro Nuclear/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/genética , Proteínas de Unión al GTP rap1/genética
7.
Mol Cell Biol ; 28(23): 7109-25, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18824540

RESUMEN

Exchange proteins activated by cAMP (cyclic AMP) 2 (Epac2) is a guanine nucleotide exchange factor for Rap1, a small G protein involved in many cellular functions, including cell adhesion, differentiation, and exocytosis. Epac2 interacts with Ras-GTP via a Ras association (RA) domain. Previous studies have suggested that the RA domain was dispensable for Epac2 function. Here we show for the first time that Ras and cAMP regulate Epac2 function in a parallel fashion and the Ras-Epac2 interaction is required for the cAMP-dependent activation of endogenous Rap1 by Epac2. The mechanism for this requirement is not allosteric activation of Epac2 by Ras but the compartmentalization of Epac2 on the Ras-containing membranes. A computational modeling is consistent with this compartmentalization being a function of both the level of Ras activation and the affinity between Ras and Epac2. In PC12 cells, a well-established model for sympathetic neurons, the Epac2 signaling is coupled to activation of mitogen-activated protein kinases and contributes to neurite outgrowth. Taken together, the evidence shows that Epac2 is not only a cAMP sensor but also a bona fide Ras effector. Coincident detection of both cAMP and Ras signals is essential for Epac2 to activate Rap1 in a temporally and spatially controlled manner.


Asunto(s)
Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Animales , Compartimento Celular , Línea Celular , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Neuritas , Neuronas/ultraestructura , Unión Proteica
8.
Mol Cell Biol ; 26(6): 2130-45, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16507992

RESUMEN

Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.


Asunto(s)
AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Secuencias de Aminoácidos , Animales , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 2 Liberador de Guanina Nucleótido/genética , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Ratones , Células PC12 , Transporte de Proteínas , ARN Interferente Pequeño , Ratas , Células Tumorales Cultivadas
9.
Blood ; 106(9): 2952-61, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16076873

RESUMEN

Small G proteins serve as critical control points in signal transduction, integrating a wide range of stimuli to dictate discrete cellular outcomes. The outcomes of small G-protein signaling can both potentiate and antagonize one another. Studies in hematopoietic cells have uncovered multiple functions for the small G protein, Rap1 (Ras-proximate-1). Because Rap1 can regulate cell proliferation, differentiation, and adhesion through distinct mechanisms, it serves as a paradigm for the need for tight cellular control of small G-protein function. Rap1 has received recent attention for its role in enhancing integrin-dependent signals. This action of Rap1 augments a variety of processes that characterize hematopoietic-cell function, including aggregation, migration, extravasation, and homing to target tissues. Rap1 may also regulate cellular differentiation and proliferation via pathways that are distinct from those mediating adhesion, and involve regulation of the mitogen-activated protein (MAP) kinase or ERK (extracellular signal-regulated kinase) cascade. These actions of Rap1 occur in selected cell types to enhance or diminish ERK signaling, depending on the expression pattern of the MAP kinase kinase kinases of the Raf family: Raf-1 and B-Raf. This review will examine the functions of Rap1 in hematopoietic cells, and focus on 3 cellular scenarios where the multiple actions of Rap1 function have been proposed. Recent studies implicating Rap1 in the maturation of megakaryocytes, the pathogenesis of chronic myelogenous leukemia (CML), and activation of peripheral T cells will receive particular attention.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Proteínas de Unión al GTP rap1/fisiología , Animales , Plaquetas/metabolismo , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Transducción de Señal
10.
Mol Cell Biol ; 25(10): 4117-28, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870282

RESUMEN

The mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) is activated following engagement of the T-cell receptor and is required for interleukin 2 (IL-2) production and T-cell proliferation. This activation is enhanced by stimulation of the coreceptor CD28 and inhibited by the coreceptor CTLA-4. We show that the small G protein Rap1 is regulated in the opposite manner; it is inhibited by CD28 and activated by CTLA-4. Together, CD3 and CTLA-4 activate Rap1 in a sustained manner. To delineate T-cell function in the absence of Rap1 activity, we generated transgenic mice expressing Rap1GAP1, a Rap1-specific GTPase-activating protein. Transgenic mice showed lymphadenopathy, and transgenic T cells displayed increased ERK activation, proliferation, and IL-2 production. More significantly, the inhibitory effect of CTLA-4 on T-cell function in Rap1GAP1-transgenic T cells was reduced. We demonstrate that CTLA-4 activates Rap1, and we propose that intracellular signals from CTLA-4 antagonize CD28, at least in part, at the level of Rap1.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD , Antígeno CTLA-4 , Adhesión Celular , Línea Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras) , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transgenes/genética
11.
J Cell Sci ; 117(Pt 25): 6085-94, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15546918

RESUMEN

Recent studies suggest that the tyrosine kinase Src plays an important role in the hormonal regulation of extracellular signal-regulated kinases (ERKs) via cyclic AMP (cAMP). Src has also been proposed to mediate signals downstream of nerve growth factor (NGF). Here, we report that the cAMP-dependent protein kinase A (PKA) induced the phosphorylation of Src at residue serine17 (S17) in multiple cell types including PC12, Hek293, AtT-20 and CHO cells. In PC12 cells, Src phosphorylation on S17 participates in the activation of the small G protein Rap1 by both cAMP and NGF. In these cells, Rap1 is required for cAMP/PKA signaling to ERKs and also for the sustained activation of ERKs by NGF. The activation of Rap1 by both cAMP and NGF was blocked by PP2, an inhibitor of Src family kinases, and by a Src mutant incapable of being phosphorylated by PKA (SrcS17A), consistent with the requirement of PKA phosphorylation of Src at S17 in these actions. PP2 and SrcS17A also inhibited the Rap1-dependent activation of ERKs by both agents. These results strongly indicate that PKA phosphorylation of Src at S17 is essential for cAMP and NGF signaling in PC12 cells and identify PKA as an important downstream target of NGF. PKA phosphorylation of Src may therefore be required for Rap1 activation in PC12 cells.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Serina/química , Proteínas de Unión al GTP rap1/metabolismo , Familia-src Quinasas/metabolismo , Animales , Western Blotting , Células CHO , Línea Celular , Cricetinae , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunoprecipitación , Neuronas/metabolismo , Células PC12 , Fosforilación , Plásmidos/metabolismo , Ratas , Transducción de Señal , Factores de Tiempo , Proteínas ras/metabolismo
12.
J Biol Chem ; 278(38): 35940-9, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12855697

RESUMEN

T cells that receive stimulation through the T cell receptor (TCR) in the absence of costimulation become anergic and are refractory to subsequent costimulation. This unresponsiveness is associated with the constitutive activation of the small G protein, Rap1, and the lack of Ras-dependent activation of ERK. Recent studies suggest that Rap1 can activate the MAP kinase kinase kinase B-Raf that is either endogenously or ectopically expressed. Peripheral T cells generally do not express B-Raf; therefore, to test the hypothesis that ectopic expression of B-Raf could permit Rap1 to activate ERK signaling, we generated transgenic mice expressing B-Raf within peripheral T cells. This converted Rap1 into an activator of ERK, to enhance ERK activation and proliferation following TCR engagement in the absence of costimulation. When T cells were incubated with engineered APCs presenting antigen on I-Ek and expressing low levels of B7, they became anergic, displayed constitutive activation of Rap1, and were deficient in Ras and ERK activation. However, when incubated with the same APCs, T cells expressing the B-Raf transgene proliferated upon restimulation and displayed elevated ERK activation. Thus B-Raf expression and enhanced ERK activation is sufficient to prevent anergy in a model of APC-induced T cell anergy. However, studies using anti-TCR antibody-induced anergy showed that the ability of ERKs to reverse T cell anergy is dependent on the anergic model utilized.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Proteínas de Unión al ADN , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-raf/biosíntesis , Transducción de Señal , Linfocitos T/enzimología , Factores de Transcripción , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Western Blotting , División Celular , Núcleo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Células Jurkat , Lectinas Tipo C , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Péptidos/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas c-raf/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Distribución Tisular , Proteína Elk-1 con Dominio ets , Proteínas de Unión al GTP rap1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...