Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 16: 936897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161178

RESUMEN

Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent among them. Extracellular amyloid-ß (Aß) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aß aggregates is considered as a trigger point. Interaction of Aß peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aß binding to the lipid membranes initiates formation of oligomers of Aß species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a "prion-like" fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aß and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aß aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.

2.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166246, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34403739

RESUMEN

Alzheimer's disease (AD) pathology progresses gradually via anatomically connected brain regions. Direct transfer of amyloid-ß1-42 oligomers (oAß) between connected neurons has been shown, however, the mechanism is not fully revealed. We observed formation of oAß induced tunneling nanotubes (TNTs)-like nanoscaled f-actin containing membrane conduits, in differentially differentiated SH-SY5Y neuronal models. Time-lapse images showed that oAß propagate from one cell to another via TNT-like structures. Preceding the formation of TNT-like conduits, we detected oAß-induced plasma membrane (PM) damage and calcium-dependent repair through lysosomal-exocytosis, followed by massive endocytosis to re-establish the PM. Massive endocytosis was monitored by an influx of the membrane-staining dye TMA-DPH and PM damage was quantified by propidium iodide influx in the absence of Ca2+. The massive endocytosis eventually caused accumulation of internalized oAß in Lamp1 positive multivesicular bodies/lysosomes via the actin cytoskeleton remodulating p21-activated kinase1 (PAK1) dependent endocytic pathway. Three-dimensional quantitative confocal imaging, structured illumination superresolution microscopy, and flowcytometry quantifications revealed that oAß induces activation of phospho-PAK1, which modulates the formation of long stretched f-actin extensions between cells. Moreover, the formation of TNT-like conduits was inhibited by preventing PAK1-dependent internalization of oAß using the small-molecule inhibitor IPA-3, a highly selective cell-permeable auto-regulatory inhibitor of PAK1. The present study reveals that the TNT-like conduits are probably instigated as a consequence of oAß induced PM damage and repair process, followed by PAK1 dependent endocytosis and actin remodeling, probably to maintain cell surface expansion and/or membrane tension in equilibrium.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Disulfuros/farmacología , Naftoles/farmacología , Quinasas p21 Activadas/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Endocitosis/efectos de los fármacos , Exocitosis/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Nanotubos/química , Quinasas p21 Activadas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA