Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 19(7): e3001287, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34283825

RESUMEN

The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.


Asunto(s)
Lisosomas/metabolismo , Nanotubos , Pliegue de Proteína , alfa-Sinucleína/metabolismo , Animales , Permeabilidad de la Membrana Celular , Técnicas de Cocultivo , Humanos , Lisosomas/ultraestructura , Microscopía Electrónica
2.
Cell Mol Life Sci ; 76(24): 4995-5009, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31139847

RESUMEN

Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Simportadores/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Endocitosis/genética , Endosomas/genética , Endosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Neuronas/metabolismo , Transporte de Proteínas , Receptores Androgénicos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab4/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión a GTP rab7
3.
Sci Rep ; 9(1): 5741, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952909

RESUMEN

Tunneling nanotubes (TNTs) are actin-containing membrane protrusions that play an essential role in long-range intercellular communication. They are involved in development of various diseases by allowing transfer of pathogens or protein aggregates as well as organelles such as mitochondria. Increase in TNT formation has been linked to many pathological conditions. Here we show that nM concentrations of tolytoxin, a cyanobacterial macrolide that targets actin by inhibition of its polymerization, significantly decrease the number of TNT-connected cells, as well as transfer of mitochondria and α-synuclein fibrils in two different cell lines of neuronal (SH-SY5Y) and epithelial (SW13) origin. As the cytoskeleton of the tested cell remain preserved, this macrolide could serve as a valuable tool for future therapies against diseases propagated by TNTs.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Neuronas/efectos de los fármacos , Piranos/farmacología , Actinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Humanos , Neuronas/metabolismo
4.
Glia ; 64(7): 1190-209, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27100937

RESUMEN

Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that axonal pathology is a direct consequence of demyelination, as we and others have shown that the node of Ranvier disassembles following loss of myelin. In contrast to the node of Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible for action potential initiation, remains intact following cuprizone-induced cortical demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that develop experimental autoimmune encephalomyelitis (EAE) independent of local demyelination. EAE-induced mice demonstrate profound compromise of AIS integrity with a progressive disruption that corresponds to EAE clinical disease severity and duration, in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox results in attenuation of AIS pathology concomitantly with microglial reversion to a less reactive state. Together, our findings suggest that inflammation, but not demyelination, disrupts AIS integrity and that therapeutic intervention may protect and reverse this pathology. GLIA 2016;64:1190-1209.


Asunto(s)
Segmento Inicial del Axón/fisiología , Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Regulación de la Expresión Génica/fisiología , Microglía/metabolismo , Animales , Animales Modificados Genéticamente , Enfermedades Autoinmunes del Sistema Nervioso/inducido químicamente , Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Enfermedades Autoinmunes del Sistema Nervioso/patología , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Ácidos Hidroxámicos/uso terapéutico , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Inhibidores de la Monoaminooxidasa/toxicidad , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
BMC Neurosci ; 16: 10, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25880931

RESUMEN

BACKGROUND: The amyloid precursor protein (APP) is a key molecule in Alzheimer disease. Its localization at the cell surface can trigger downstream signaling and APP cleavages. APP trafficking to the cell surface in neurons is not clearly understood and may be related to the interactions with its partners. In this respect, by having homologies with kinesin light chain domains and because of its capacity to bind APP, PAT1 represents a good candidate. RESULTS: We observed that PAT1 binds poorly APP at the cell surface of primary cortical neurons contrary to cytoplasmic APP. Using down and up-regulation of PAT1, we observed respectively an increase and decrease of APP at the cell surface. The increase of APP at the cell surface induced by low levels of PAT1 did not trigger cell death signaling. CONCLUSIONS: These data suggest that PAT1 slows down APP trafficking to the cell surface in primary cortical neurons. Our results contribute to the elucidation of mechanisms involved in APP trafficking in Alzheimer disease.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Simportadores/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animales , Biotinilación , Línea Celular , Supervivencia Celular/fisiología , Células Cultivadas , Citoplasma/metabolismo , Regulación hacia Abajo , Escherichia coli , Humanos , Ratones , ARN Interferente Pequeño , Simportadores/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...