Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 651: 114-120, 2023 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-36812744

RESUMEN

In pharmacokinetics plasma protein binding (PPB) is a well-established parameter impacting drug disposition. The unbound fraction (fu) is arguably regarded the effective concentration at the target site. Pharmacology and toxicology, increasingly use in vitro models. The translation of in vitro concentrations to in vivo doses can be supported by toxicokinetic modelling, e.g. physiologically based toxicokinetic models (PBTK). PPB of a test substance is an input parameter for PBTK. We compared three methods to quantify fu: rapid equilibrium dialysis (RED), ultrafiltration (UF) and ultracentrifugation (UC) using twelve substances covering a wide range of Log Pow (-0.1 to 6.8) and molecular weights (151 and 531 g/mol): Acetaminophen, Bisphenol A, Caffeine, Colchicine, Fenarimol, Flutamide, Genistein, Ketoconazole, α-Methyltestosterone, Tamoxifen, Trenbolone and Warfarin. After RED and UF separation, three polar substances (Log Pow < 2) were largely unbound (fu > 70%), while more lipophilic substances were largely bound (fu < 33%). Compared to RED or UF, UC resulted in a generally higher fu of lipophilic substances. fu obtained after RED and UF were more consistent with published data. For half of the substances, UC resulted in fu higher than the reference data. UF, RED and both UF and UC, resulted in lower fu of Flutamide, Ketoconazole and Colchicine, respectively. For fu quantifications, the separation method should be selected according to the test substance's properties. Based on our data, RED is suitable for a broader range of substances while UC and UF are suitable for polar substances.


Asunto(s)
Flutamida , Ultrafiltración , Cetoconazol , Diálisis Renal , Unión Proteica , Proteínas Sanguíneas/metabolismo , Ultracentrifugación
2.
Chem Res Toxicol ; 35(11): 1962-1973, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36264934

RESUMEN

Nominal concentrations (CNom) in cell culture media are routinely used to define concentration-effect relationships in the in vitro toxicology. The actual concentration in the medium (CMedium) can be affected by adsorption processes, evaporation, or degradation of chemicals. Therefore, we measured the total and free concentration of 12 chemicals, covering a wide range of lipophilicity (log KOW -0.07-6.84), in the culture medium (CMedium) and cells (CCell) after incubation with Balb/c 3T3 cells for up to 48 h. Measured values were compared to predictions using an as yet unpublished in silico mass balance model that combined relevant equations from similar models published by others. The total CMedium for all chemicals except tamoxifen (TAM) were similar to the CNom. This was attributed to the cellular uptake of TAM and accumulation into lysosomes. The free (i.e., unbound) CMedium for the low/no protein binding chemicals were similar to the CNom, whereas values of all moderately to highly protein-bound chemicals were less than 30% of the CNom. Of the 12 chemicals, the two most hydrophilic chemicals, acetaminophen (APAP) and caffeine (CAF), were the only ones for which the CCell was the same as the CNom. The CCell for all other chemicals tended to increase over time and were all 2- to 274-fold higher than CNom. Measurements of CCytosol, using a digitonin method to release cytosol, compared well with CCell (using a freeze-thaw method) for four chemicals (CAF, APAP, FLU, and KET), indicating that both methods could be used. The mass balance model predicted the total CMedium within 30% of the measured values for 11 chemicals. The free CMedium of all 12 chemicals were predicted within 3-fold of the measured values. There was a poorer prediction of CCell values, with a median overprediction of 3- to 4-fold. In conclusion, while the number of chemicals in the study is limited, it demonstrates the large differences between CNom and total and free CMedium and CCell, which were also relatively well predicted by the mass balance model.


Asunto(s)
Acetaminofén , Técnicas de Cultivo de Célula , Ratones , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...