Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nephrol ; 33(5): 909-915, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32170575

RESUMEN

Increased glycolytic flux into the diabetic kidney, combined with glycolytic inefficiencies introduced by oxidative stress, acts to increase the generation of triose-phosphate intermediates, which spontaneously degrade to form methylglyoxal. At the same time, the glyoxalase-catalysed pathway that degrades excess methylglyoxal is impaired. The resulting dicarbonyl stress increases the accumulation of Advanced Glycation End-products (AGEs), as highly reactive dicarbonyls modify proteins, DNA, phospholipids and even small molecules like glutathione and nitric oxide. The resulting molecular dysfunction, contributes to the development and progression of kidney disease in diabetes. The importance of the dicarbonyls in diabetic kidney disease is clearly demonstrated by the reno-protective benefits of structurally-disparate dicarbonyl scavengers in experimental studies. Equally, modulating the glyoxalase pathway is able to alter both dicarbonyl generation and renal dysfunction in the presence and absence of hyperglycaemia. However, beyond improving glycemia control and reducing oxidative stress, an effective way to attenuate dicarbonyl-mediated damage in patients with diabetic kidney disease remains an elusive goal.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Lactoilglutatión Liasa , Envejecimiento , Nefropatías Diabéticas/etiología , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído
2.
J Clin Invest ; 129(1): 406-421, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530993

RESUMEN

Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB-driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362-404 was able to inhibit transactivation of RAGE and attenuate Ang II-dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362-404 restored Ang II-dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.


Asunto(s)
Aterosclerosis/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Activación Transcripcional , Animales , Aterosclerosis/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Eliminación de Gen , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados para ApoE , Dominios Proteicos , Receptor de Angiotensina Tipo 1/genética
3.
BMC Genomics ; 17: 331, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147217

RESUMEN

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.


Asunto(s)
Burkholderia pseudomallei/patogenicidad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación , Virulencia
4.
Artículo en Inglés | MEDLINE | ID: mdl-21543872

RESUMEN

Vibrio parahaemolyticus is a human pathogen associated with gastroenteritis caused by the ingestion of contaminated raw seafood. V. parahaemolyticus is able to survive exposure to low temperatures typical of those used for the refrigeration of foods by entering a viable but nonculturable (VBNC) state. The VBNC cells can regain culturability and renewed ability to cause infection upon temperature upshift. The resuscitation-promoting factor protein (Rpf, YeaZ) plays a key role in reactivation of growth. Crystals of V. parahaemolyticus YeaZ have been grown using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitating agent. The crystals belonged to the primitive monoclinic space group P2(1), with unit-cell parameters a = 81.7, b = 63.8, c = 82.3 Å, ß = 105° and four subunits in the asymmetric unit. A complete X-ray diffraction data set was collected from a single crystal to 3.1 Å resolution.


Asunto(s)
Proteínas Bacterianas/química , Vibrio parahaemolyticus/química , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA