Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Total Environ ; 905: 167056, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717780

RESUMEN

Exposure to air pollution can lead to negative health impacts, with children highly susceptible due to their immature immune and lung systems. Childhood exposure may vary by socio-economic status (SES) due to differences in both outdoor and indoor air pollution levels, the latter of which depends on, for example, building quality, overcrowding and occupant behaviours; however, exposure estimates typically rely on the outdoor component only. Quantifying population exposure across SES requires accounting for variations in time-activity patterns, outdoor air pollution concentrations, and concentrations in indoor microenvironments that account for pollution-generating occupant behaviours and building characteristics. Here, we present a model that estimates personal exposure to PM2.5 for ~1.3 million children aged 4-16 years old in the Greater London region from different income groups. The model combines 1) A national time-activity database, which gives the percentage of each group in different residential and non-residential microenvironments throughout a typical day; 2) Distributions of modelled outdoor PM2.5 concentrations; 3) Detailed estimates of domestic indoor concentrations for different housing and occupant typologies from the building physics model, EnergyPlus, and; 4) Non-domestic concentrations derived from a mass-balance approach. The results show differences in personal exposure across socio-economic groups for children, where the median daily exposure across all scenarios (winter/summer and weekends/weekdays) is 17.2 µg/m3 (95%CIs: 12.1 µg/m3-41.2 µg/m3) for children from households in the lowest income quintile versus 14.5 µg/m3 (95%CIs: 11.5 µg/m3 - 27.9 µg/m3) for those in the highest income quintile. Though those from lower-income homes generally fare worse, approximately 57 % of London's school-aged population across all income groups, equivalent to 761,976 children, have a median daily exposure which exceeds guideline 24-h limits set by the World Health Organisation. The findings suggest residential indoor sources of PM2.5 are a large contributor to personal exposure for school children in London. Interventions to reduce indoor exposure in the home (for example, via the maintenance of kitchen extract ventilation and transition to cleaner cooking fuels) should therefore be prioritised along with the continued mitigation of outdoor sources in Greater London.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Niño , Humanos , Preescolar , Adolescente , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Londres , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis
2.
Environ Int ; 178: 108127, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37544267

RESUMEN

Buildings are constructed and operated to satisfy human needs and improve quality of life. Good indoor air quality (IAQ) and thermal comfort are prerequisites for human health and well-being. For their provision, buildings often rely on heating, ventilation, and air conditioning (HVAC) systems, which may lead to higher energy consumption. This directly impacts energy efficiency goals and the linked climate change considerations. The balance between energy use, optimum IAQ and thermal comfort calls for scientifically solid and well-established limit values for exposures experienced by building occupants in indoor spaces, including homes, schools, and offices. The present paper aims to appraise limit values for selected indoor pollutants reported in the scientific literature, and to present how they are handled in international and national guidelines and standards. The pollutants include carbon dioxide (CO2), formaldehyde (CH2O), particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), and radon (Rn). Furthermore, acknowledging the particularly strong impact on energy use from HVAC, ventilation, indoor temperature (T), and relative humidity (RH) are also included, as they relate to both thermal comfort and the possibilities to avoid moisture related problems, such as mould growth and proliferation of house dust mites. Examples of national regulations for these parameters are presented, both in relation to human requirements in buildings and considering aspects related to energy saving. The work is based on the Indoor Environmental Quality (IEQ) guidelines database, which spans across countries and institutions, and aids in taking steps in the direction towards a more uniform guidance for values of indoor parameters. The database is coordinated by the Scientific and Technical Committee (STC) 34, as part of ISIAQ, the International Society of Indoor Air Quality and Climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Humanos , Contaminación del Aire Interior/análisis , Calidad de Vida , Material Particulado/análisis , Ventilación , Contaminantes Atmosféricos/análisis
3.
Environ Int ; 170: 107610, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356553

RESUMEN

High-quality and comprehensive exposure-related data are critical for different decision contexts, including environmental and human health monitoring, and chemicals risk assessment and management. However, exposure-related data are currently scattered, frequently of unclear quality and structure, not readily accessible, and stored in various-partly overlapping-data repositories, leading to inefficient and ineffective data usage in Europe and globally. We propose strategic guidance for an integrated European exposure data production and management framework for use in science and policy, building on current and future data analysis and digitalization trends. We map the existing exposure data landscape to requirements for data analytics and repositories across European policies and regulations. We further identify needs and ways forward for improving data generation, sharing, and usage, and translate identified needs into an operational action plan for European and global advancement of exposure data for policies and regulations. Identified key areas of action are to develop consistent exposure data standards and terminology for data production and reporting, increase data transparency and availability, enhance data storage and related infrastructure, boost automation in data management, increase data integration, and advance tools for innovative data analysis. Improving and streamlining exposure data generation and uptake into science and policy is crucial for the European Chemicals Strategy for Sustainability and European Digital Strategy, in line with EU Data policies on data management and interoperability.


Asunto(s)
Ciencia de los Datos , Humanos , Europa (Continente)
4.
Sci Total Environ ; 839: 156201, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623519

RESUMEN

One of the more important classes of potentially toxic indoor air chemicals are the Volatile Organic Compounds (VOCs). However, due to a limited understanding of the relationships between indoor concentrations of individual VOCs and health outcomes, there are currently no universal health-based guideline values for VOCs within Europe including the UK. In this study, a systematic search was conducted designed to capture evidence on concentrations, emissions from indoor sources, and health effects for VOCs measured in European residences. We identified 65 individual VOCs, and the most commonly measured were aromatic hydrocarbons (14 chemicals), alkane hydrocarbons (9), aldehydes (8), aliphatic hydrocarbons (5), terpenes (6), chlorinated hydrocarbons (4), glycol and glycol ethers (3) and esters (2). The pathway of interest was inhalation and 8 individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes were associated with respiratory health effects. Members of the chlorinated hydrocarbon family were associated with cardiovascular neurological and carcinogenic health effects and some were irritants as were esters and terpenes. Eight individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes identified in European residences were associated with respiratory health effects. Of the 65 individual VOCs, 52 were from sources associated with building and construction materials (e.g. brick, wood products, adhesives and materials for flooring installation etc.), 41 were linked with consumer products (passive, electric and combustible air fresheners, hair sprays, deodorants) and 9 VOCs were associated with space heating, which may reflect the relatively small number of studies discussing emissions from this category of sources. A clear decrease in concentrations of formaldehyde was observed over the last few years, whilst acetone was found to be one of the most abundant but underreported species. A new approach based on the operational indoor air quality surveillance will both reveal trends in known VOCs and identify new compounds.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Aldehídos/análisis , Aldehídos/toxicidad , Alcanos , Monitoreo del Ambiente , Ésteres , Glicoles , Hidrocarburos/análisis , Terpenos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad
6.
Wellcome Open Res ; 6: 35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095507

RESUMEN

Background: Environmental improvement is a priority for urban sustainability and health and achieving it requires transformative change in cities. An approach to achieving such change is to bring together researchers, decision-makers, and public groups in the creation of research and use of scientific evidence. Methods: This article describes the development of a programme theory for Complex Urban Systems for Sustainability and Health (CUSSH), a four-year Wellcome-funded research collaboration which aims to improve capacity to guide transformational health and environmental changes in cities. Results: Drawing on ideas about complex systems, programme evaluation, and transdisciplinary learning, we describe how the programme is understood to "work" in terms of its anticipated processes and resulting changes. The programme theory describes a chain of outputs that ultimately leads to improvement in city sustainability and health (described in an 'action model'), and the kinds of changes that we expect CUSSH should lead to in people, processes, policies, practices, and research (described in a 'change model'). Conclusions: Our paper adds to a growing body of research on the process of developing a comprehensive understanding of a transdisciplinary, multiagency, multi-context programme. The programme theory was developed collaboratively over two years. It involved a participatory process to ensure that a broad range of perspectives were included, to contribute to shared understanding across a multidisciplinary team. Examining our approach allowed an appreciation of the benefits and challenges of developing a programme theory for a complex, transdisciplinary research collaboration. Benefits included the development of teamworking and shared understanding and the use of programme theory in guiding evaluation. Challenges included changing membership within a large group, reaching agreement on what the theory would be 'about', and the inherent unpredictability of complex initiatives.

7.
Build Cities ; 2(1): 425-448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124667

RESUMEN

Deprived communities in many cities are exposed to higher levels of outdoor air pollution, and there is increasing evidence of similar disparities for indoor air pollution exposure. There is a need to understand the drivers for this exposure disparity in order to develop effective interventions aimed at improving population health and reducing health inequities. With a focus on London, UK, this paper assembles evidence to examine why indoor exposure to PM2.5, NOx and CO may disproportionately impact low-income groups. In particular, five factors are explored, namely: housing location and ambient outdoor levels of pollution; housing characteristics, including ventilation properties and internal sources of pollution; occupant behaviours; time spent indoors; and underlying health conditions. Evidence is drawn from various sources, including building physics models, modelled outdoor air pollution levels, time-activity surveys, housing stock surveys, geographical data, and peer-reviewed research. A systems framework is then proposed to integrate these factors, highlighting how exposure to high levels of indoor air pollution in low-income homes is in large part due to factors beyond the control of occupants, and is therefore an area of systemic inequality. POLICY RELEVANCE: There is increasing public and political awareness of the impact of air pollution on public health. Strong scientific evidence links exposure to air pollution with morbidity and mortality. Deprived communities may be more affected, however, with limited evidence on how deprivation may influence their personal exposure to air pollution, both outdoors and indoors. This paper describes different factors that may lead to low-income households being exposed to higher levels of indoor air pollution than the general population, using available data and models for London (i.e. living in areas of higher outdoor air pollution, in poor-quality housing, undertaking more pollution-generating activities indoors and spending more time indoors). A systems approach is used to show how these factors lead to systemic exposure inequalities, with low-income households having limited opportunities to improve their indoor air quality. This paper can inform actions and public policies to reduce environmental health inequalities, considering both indoor and outdoor air.

8.
Environ Res ; 197: 111038, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745934

RESUMEN

Exposure to air pollution poses a significant risk to children's health. However, there is not currently a full and clear understanding of how many schools in England are in locations with high concentrations of air pollutants, and few studies have examined potential associations between air quality outside schools and socio-economic inequalities. To address these gaps, in this part of our study we used modelled air pollution concentrations, as well as monitoring data, to estimate how many schools in England are co-located with levels of annual mean PM2.5 that exceed the WHO recommended annual mean limit of 10 µgm-3, and matched school annual mean PM2.5 concentrations to inequality metrics. We assessed the limitations of our methodology by carrying out a sensitivity analysis using a small patch of high-resolution air pollution data generated using a data extrapolation method. Mapping of modelled annual mean concentrations at school locations indicates that around 7800 schools in England - over a third of schools - are in areas where annual mean PM2.5 in 2017 exceeded the WHO recommended guideline (10 µgm-3). Currently over 3.3 million pupils are attending these schools. We also found that air pollution outside schools is likely to be compounding existing childhood socio-economic disadvantage. Schools in areas with high annual mean PM2.5 levels (>12 µgm-3) had a significantly higher median intake of pupils on free school meals (17.8%) compared to schools in low PM2.5 areas (<6 µgm-3 PM2.5, 6.5% on free school meals). Schools in the highest PM2.5 concentration range had significantly higher ethnic minority pupil proportion (78.3%) compared to schools in the lowest concentration range (6.8%). We also found that in major urban conurbations, ethnically diverse schools with high PM2.5 concentrations are more likely to be near major roads, and less likely to be near significant greenspace, compared to less ethnically diverse schools in areas with lower PM2.5 levels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Inglaterra , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Etnicidad , Humanos , Grupos Minoritarios , Material Particulado/análisis , Instituciones Académicas
9.
Environ Res ; 196: 110817, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524334

RESUMEN

Children are particularly vulnerable to the detrimental health impacts of poor air quality. In the UK, recent initiatives at local council level have focussed on mitigating children's air pollution exposure at school. However, an overview of the available evidence on concentration and exposure in school environments - and a summary of key knowledge gaps - has so far been lacking. To address this, we conducted a review bringing together recent academic and grey literature, relating to air quality in outdoor school environments - including playgrounds, drop-off zones, and the school commute - across high-income countries. We aimed to critically assess, synthesise, and categorise the available literature, to produce recommendations on future research and mitigating actions. Our searches initially identified 883 articles of interest, which were filtered down in screening and appraisal to a final total of 100 for inclusion. Many of the included studies focussed on nitrogen dioxide (NO2), and particulate matter (PM) in both the coarse and fine fractions, around schools across a range of countries. Some studies also observed ozone (O3) and volatile organic compounds (VOCs) outside schools. Our review identified evidence that children can encounter pollution peaks on the school journey, at school gates, and in school playgrounds; that nearby traffic is a key determinant of concentrations outside schools; and that factors relating to planning and urban design - such as the type of playground paving, and amount of surrounding green space - can influence school site concentrations. The review also outlines evidence gaps that can be targeted in future research. These include the need for more personal monitoring studies that distinguish between the exposure that takes place indoors and outdoors at school, and a need for a greater number of studies that conduct before-after evaluation of local interventions designed to mitigate children's exposure, such as green barriers and road closures. Finally, our review also proposes some tangible recommendations for policymakers and local leaders. The creation of clean air zones around schools; greening of school grounds; careful selection of new school sites; promotion of active travel to and from school; avoidance of major roads on the school commute; and scheduling of outdoor learning and play away from peak traffic hours, are all advocated by the evidence collated in this review.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Niño , Países Desarrollados , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Instituciones Académicas
10.
Sci Total Environ ; 766: 142585, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33121763

RESUMEN

A systematic literature review was carried out to examine the impact of portable air purifiers (PAPs) on indoor air quality (PM2.5) and health, focussing on adults and children in indoor environments (homes, schools and offices). Analysed studies all showed reductions in PM2.5 of between 22.6 and 92.0% with the use of PAPs when compared to the control. Associations with health impacts found included those on blood pressure, respiratory parameters and pregnancy outcomes. Changes in clinical biochemical markers were also identified. However, evidence for such associations was limited and inconsistent. Health benefits from a reduction in PM2.5 would be expected as the cumulative body of scientific evidence from various cohort studies shows positive impacts of long-term reduction in PM2.5 concentrations. The current evidence demonstrates that using a PAP results in short-term reductions in PM2.5 in the indoor environment, which has the potential to offer health benefits.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Biomarcadores , Presión Sanguínea , Niño , Humanos , Material Particulado/análisis
11.
Sci Total Environ ; 755(Pt 1): 142187, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33017761

RESUMEN

Epidemiological studies have shown a positive association between exposure to outdoor and indoor solid fuel combustion and adverse health effects. We reviewed the epidemiological evidence from Europe, North America, Australia and New Zealand on the association between outdoor and indoor exposure to solid fuel combustion and respiratory outcomes in children. We performed a systematic review and meta-analysis. Pooled relative risks (RRs) and 95% confidence intervals (CI) were calculated using random-effects models. We identified 74 articles. Due to limited evidence on other exposures and outcomes, we performed meta-analyses on the association between indoor wood burning exposure and respiratory outcomes. The RR for the highest vs the lowest category of indoor wood exposure was 0.90 (95% CI 0.77-1.05) considering asthma as an outcome. The corresponding pooled RRs for lower respiratory infection (LRI) and upper respiratory infection (URI) were 1.11 (95% CI 0.88, 1.41) and 1.11 (95% CI 0.85, 1.44) respectively. No association was found between indoor wood burning exposure and risk of wheeze and cough. Inconsistent and limited results were found considering the relationship between indoor wood burning exposure and other respiratory outcomes (rhinitis and hay fever, influenza) as well as indoor coal burning exposure and respiratory outcomes in children. Results from epidemiological studies that evaluated the relationship between the exposure to outdoor emissions derived from indoor combustion of solid fuels are too limited to allow firm conclusions. We found no association between indoor wood burning exposure and risk of asthma. A slight, but not significant, increased risk of LRI and URI was identified, although the available evidence is limited. Epidemiological studies evaluating the relationship between indoor coal burning exposure and respiratory outcomes, as well as, studies considering exposure to outdoor solid fuels, are too limited to draw any firm conclusions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Australia , Niño , Culinaria , Países Desarrollados , Monitoreo del Ambiente , Europa (Continente) , Humanos , Nueva Zelanda , América del Norte , Material Particulado/análisis , Madera/química
12.
Environ Int ; 143: 105748, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32629198

RESUMEN

Disparities in outdoor air pollution exposure between individuals of differing socio-economic status is a growing area of research, widely explored in the environmental health literature. However, in developed countries, around 80% of time is spent indoors, meaning indoor air pollution may be a better proxy for personal exposure. Building characteristics - such as build quality, volume and ventilation - and occupant behaviour, mean indoor air pollution may also vary across socio-economic groups, leading to health inequalities. Much of the existing literature has focused on inequalities in exposure to outdoor air pollution, and there is thus a lack of an evidence base reviewing data for indoor environments. In this study, a scoping review of the literature on indoor air pollution exposures across different socio-economic groups is performed, examining evidence from both monitoring and modelling studies in the developed world. The literature was reviewed, identifying different indoor pollutants, definitions for socio-economic status and pre- and post- housing interventions. Based on the review, the study proposes a modelling methodology for evaluating the effects of environmental policies on different socio-economic populations. Using a sample size calculation, obstacles in obtaining sufficiently large samples of monitored data are demonstrated. A modelling framework for the rapid quantification of daily home exposure is then outlined as a proof of concept. While significant additional research is required to examine inequalities in indoor exposures, modelling approaches may provide opportunities to quantify exposure disparities due to housing and behaviours across populations of different socio-economic status.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Países Desarrollados , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Factores Socioeconómicos , Ventilación
13.
Health Res Policy Syst ; 18(1): 18, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054540

RESUMEN

BACKGROUND: Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. METHODS: Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. RESULTS: The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced - (1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. CONCLUSIONS: The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings.


Asunto(s)
Equidad en Salud/organización & administración , Encuestas Epidemiológicas/normas , Administración en Salud Pública/normas , Ambiente , Europa (Continente)/epidemiología , Femenino , Conductas Relacionadas con la Salud , Equidad en Salud/normas , Política de Salud , Accesibilidad a los Servicios de Salud/normas , Disparidades en el Estado de Salud , Indicadores de Salud , Humanos , Estilo de Vida , Masculino , Formulación de Políticas , Seguridad , Determinantes Sociales de la Salud/normas , Factores Socioeconómicos
14.
Artículo en Inglés | MEDLINE | ID: mdl-30866549

RESUMEN

The different geographical contexts seen in European metropolitan areas are reflected in the uneven distribution of health risk factors for the population. Accumulating evidence on multiple health determinants point to the importance of individual, social, economic, physical and built environment features, which can be shaped by the local authorities. The complexity of measuring health, which at the same time underscores the level of intra-urban inequalities, calls for integrated and multidimensional approaches. The aim of this study is to analyse inequalities in health determinants and health outcomes across and within nine metropolitan areas: Athens, Barcelona, Berlin-Brandenburg, Brussels, Lisbon, London, Prague, Stockholm and Turin. We use the EURO-HEALTHY Population Health Index (PHI), a tool that measures health in two components: Health Determinants and Health Outcomes. The application of this tool revealed important inequalities between metropolitan areas: Better scores were found in Northern cities when compared with their Southern and Eastern counterparts in both components. The analysis of geographical patterns within metropolitan areas showed that there are intra-urban inequalities, and, in most cities, they appear to form spatial clusters. Identifying which urban areas are measurably worse off, in either Health Determinants or Health Outcomes, or both, provides a basis for redirecting local action and for ongoing comparisons with other metropolitan areas.


Asunto(s)
Disparidades en el Estado de Salud , Adulto , Ciudades/epidemiología , Europa (Continente)/epidemiología , Femenino , Geografía , Humanos , Salud Poblacional , Factores de Riesgo
15.
Sci Total Environ ; 658: 1630-1639, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30678019

RESUMEN

Urban areas in Europe are facing a range of environmental public health challenges, such as air pollution, traffic noise and road injuries. The identification and quantification of the public health risks associated with exposure to environmental conditions is important for prioritising policies and interventions that aim to diminish the risks and improve the health of the population. With this purpose in mind, the EURO-HEALTHY project used a consistent approach to assess the impact of key environmental risk factors and urban environmental determinants on public health in European metropolitan areas. A number of environmental public health indicators, which are closely tied to the physical and built environment, were identified through stakeholder consultation; data were collected from six European metropolitan areas (Athens, Barcelona, Lisbon, London, Stockholm and Turin) covering the period 2000-2014, and a health impact assessment framework enabled the quantification of health effects (attributable deaths) associated with these indicators. The key environmental public health indicators were related to air pollution and certain urban environmental conditions (urban green spaces, road safety). The air pollution was generally the highest environmental public health risk; the associated number of deaths in Athens, Barcelona and London ranged between 800 and 2300 attributable deaths per year. The number of victims of road traffic accidents and the associated deaths were lowest in the most recent year compared with previous years. We also examined the positive impacts on health associated with urban green spaces by calculating reduced mortality impacts for populations residing in areas with greater green space coverage; results in Athens showed reductions of all-cause mortality of 26 per 100,000 inhabitants for populations with benefits of local greenspace. Based on our analysis, we discuss recommendations of potential interventions that could be implemented to reduce the environmental public health risks in the European metropolitan areas covered by this study.


Asunto(s)
Accidentes de Tránsito , Contaminación del Aire/análisis , Evaluación del Impacto en la Salud , Ruido , Ciudades , Salud Ambiental , Europa (Continente) , Evaluación del Impacto en la Salud/legislación & jurisprudencia , Humanos , Salud Pública
16.
Artículo en Inglés | MEDLINE | ID: mdl-27120608

RESUMEN

Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.


Asunto(s)
Ambiente Controlado , Lugar de Trabajo/psicología , Adulto , Contaminación del Aire Interior , Eficiencia , Emociones , Ambiente , Etnicidad , Europa (Continente) , Femenino , Finlandia , Francia , Grecia , Humanos , Hungría , Italia , Masculino , Persona de Mediana Edad , Países Bajos , Percepción , Satisfacción Personal , Portugal , España , Encuestas y Cuestionarios , Lugar de Trabajo/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...