Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36840096

RESUMEN

Plastic contamination has become one of the most pressing environmental issues due to rapidly increasing production of disposable plastic products, their fragmentation into smaller pieces, and long persistence in the environment, which affects all living organisms, including plants. In this study, Allium cepa roots were exposed to 0.01, 0.1, and 1 g L-1 of commercial polystyrene (PS-MPs) and polymethyl methacrylate microparticles (PMMA-MPs) for 72 h. Dynamic light scattering (DLS) analyses showed high stability of both types of MPs in ultrapure water used for A. cepa treatment. Morphometric analysis revealed no significant change in root length compared to control. Pyrolysis hyphenated to gas chromatography and mass spectrometry (Py-GC-MS) has proven PS-MPs uptake by onion roots in all treatments, while PMMA-MPs were recorded only upon exposure to the highest concentration. Neither MPs induced any (cyto)toxic effect on root growth and PMMA-MPs even had a stimulating effect on root growth. ROS production as well as lipid and protein oxidation were somewhat higher in PS-MP treatments compared to the corresponding concentrations of PMMA-MP, while neither of the applied MPs induced significant damage to the DNA molecule assayed with a Comet test. Significantly elevated activity of H2O2 scavenging enzymes, catalase, and peroxidases was measured after exposure to both types of MPs. Obtained results suggest that onion roots take up PS-MPs more readily in comparison to PMMA-MPs, while both types of MPs induce a successful activation of antioxidant machinery in root cells that prevented the occurrence of toxic effects.

2.
Materials (Basel) ; 14(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947374

RESUMEN

The dominant type of polymer particles in water, sediment, and various organisms partly derives from natural and synthetic fibres released in the washing process. Pollution of aquatic recipients with these particles poses an interdisciplinary problem throughout the world. Wastewater from washing represents a dispersion system with different particle sizes that is also loaded with the source of the particles. Due to this complex system, the qualification and quantification of this type of pollution is difficult. In this paper, the laser diffraction technique was applied to characterize particles in effluents from washing and rinsing materials made of a mixture of cotton and polyester. The results obtained through the analysis prove that the laser diffraction technique is acceptable for the characterization of a composite effluent sample. The advanced statistical technique of multivariate analysis confirmed the interrelationship of the parameters of this complex dispersion system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA