Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(3): 3568-3576, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401884

RESUMEN

Avalanche photodiodes (APDs) with thin avalanche regions have shown low excess noise characteristics and high gain-bandwidth products, so they are suited for long-haul optical communications. In this work, we investigated how carrier injection profile affects the avalanche gain and excess noise factors of Al0.85Ga0.15As0.56Sb0.44 (lattice-matched to InP substrates) p-i-n and n-i-p diodes with total depletion widths of 145-240 nm. Different carrier injection profiles were achieved by using light with wavelengths of 420, 543 and 633nm. For p-i-n diodes, shorter wavelength light produces higher avalanche gains for a given reverse bias and lower excess noise factors at a given gain, compared to longer wavelength light. Thus, using 420 nm light on the p-i-n diodes, corresponding to pure electron injection conditions, gave the highest gain and lowest excess noise. In n-i-p diodes, pure hole injection yields significantly lower gain and higher excess noise, compared to mixed carrier injection. These show that the electron ionization coefficient, α, is higher than the hole ionization coefficient, ß. Using pure electron injection, excess noise factor characteristics with effective ionization ratios, keff, of 0.08-0.1 were obtained. This is significantly lower than those of InP and In0.52Al0.48As, the commonly used avalanche materials combined with In0.53Ga0.47As absorber. The data reported in this paper is available from the ORDA digital repository (DOI: 10.15131/shef. DATA: 5787318).

2.
Opt Express ; 22(19): 22608-15, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321730

RESUMEN

An InGaAs/InAlAs Single Photon Avalanche Diode was fabricated and characterized. Leakage current, dark count and photon count measurements were carried out on the devices from 260 to 290 K. Due to better temperature stability of avalanche breakdown in InAlAs, the device breakdown voltage varied by < 0.2 V over the 30 K temperature range studied, which corresponds to a temperature coefficient of breakdown voltage less than 7 mV/K. The single photon detection efficiency achieved in gated mode was 21 and 10% at 260 and 290 K, respectively. However the dark count rates were high due to excessive band-to-band tunneling current in the InAlAs avalanche region.


Asunto(s)
Arsenicales/química , Indio/química , Fosfinas/química , Fotometría/instrumentación , Fotones , Semiconductores , Diseño de Equipo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...