Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(3): 221436, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36998760

RESUMEN

Natural light-dark cycles synchronize an animal's internal clock with environmental conditions. The introduction of artificial light into the night-time environment masks natural light cues and has the potential to disrupt this well-established biological rhythm. Nocturnal animal species, such as bats, are adapted to low light conditions and are therefore among the most vulnerable to the impacts of artificial light at night (ALAN). The behaviour and activity of insectivorous bats is disrupted by short-wavelength artificial light at night, while long-wavelength light is less disruptive. However, the physiological consequences of this lighting have not been investigated. Here, we examine the effect of LEDs with different spectra on urinary melatonin in an insectivorous bat. We collected voluntarily voided urine samples from Gould's wattled bats (Chalinolobus gouldii) and measured melatonin-sulfate under ambient night-time conditions (baseline) and under red (λP 630 nm), amber (λP 601 nm), filtered warm white (λP 586 nm) and cool white (λP 457 nm) LEDs. We found no effect of light treatment on melatonin-sulfate irrespective of spectra. Our findings suggest that short-term exposure to LEDs at night do not disrupt circadian physiology in the light-exploiting Gould's wattled bat.

2.
UCL Open Environ ; 4: e036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37228454

RESUMEN

Terrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms. Despite this, current management practices for light pollution rarely consider connectivity between realms. Here we discuss the ways in which ALAN can have cross-realm impacts and provide case studies for each example discussed. We identified three main ways in which ALAN can affect two or more realms: 1) impacts on species that have life cycles and/or stages in two or more realms, such as diadromous fish that cross realms during ontogenetic migrations and many terrestrial insects that have juvenile phases of the life cycle in aquatic realms; 2) impacts on species interactions that occur across realm boundaries, and 3) impacts on transition zones or ecosystems such as mangroves and estuaries. We then propose a framework for cross-realm management of light pollution and discuss current challenges and potential solutions to increase the uptake of a cross-realm approach for ALAN management. We argue that the strengthening and formalisation of professional networks that involve academics, lighting practitioners, environmental managers and regulators that work in multiple realms is essential to provide an integrated approach to light pollution. Networks that have a strong multi-realm and multi-disciplinary focus are important as they enable a holistic understanding of issues related to ALAN.

3.
J Vis Exp ; (178)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35037664

RESUMEN

Sampling methods are selected depending on the targeted species or the spatial and temporal requirements of the study. However, most methods for passive sampling of flying insects have a poor temporal resolution because it is time-consuming, costly and/or logistically difficult to perform. Effective sampling of flying insects attracted to artificial light at night (ALAN) requires sampling at user-defined time points (nighttime only) across well-replicated sites resulting in major time and labor-intensive survey effort or expensive automated technologies. Described here is a low-cost automated intercept trap that requires no specialist equipment or skills to construct and operate, making it a viable option for studies that require temporal sub-sampling across multiple sites. The trap can be used to address a wide range of other ecological questions that require a greater temporal and spatial scale than is feasible with previous trap technology.


Asunto(s)
Insectos , Contaminación Lumínica , Animales , Vuelo Animal
4.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 497-505, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29722167

RESUMEN

The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m2 ), and no lighting (irradiance from sky glow < 0.37 × 10-3 W/m2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts.


Asunto(s)
Iluminación/efectos adversos , Macropodidae/fisiología , Animales , Antioxidantes/análisis , Color , Femenino , Luz/efectos adversos , Peroxidación de Lípido/efectos de la radiación , Melatonina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...