Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794561

RESUMEN

We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining the bulk porosity of the support while increasing the thermal and chemical robustness of the membrane and boosting the catalytic activity of TiO2 nanoparticles. The membranes exhibited a specific chemical composition and bonding, with predominant carbon-oxygen bonds from CA and GO in the bulk, and carbon-fluorine bonds on their PTFE-like coated sides. We have also tested the membranes' photocatalytic activities on azithromycin-containing wastewaters, demonstrating excellent efficiency with more than 80% degradation for 2 wt.% TiO2-decorated GO in the CA-GO-TiO2/PTFE-like membranes. The degradation of the azithromycin formulation occurs in two steps, with reaction rates being correlated to the amount of GO-TiO2 in the membranes.

2.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570638

RESUMEN

In this work, we describe an ion mass spectra processing method from plasmas generated in Ar and Ar/H2 gases in contact with tungsten surfaces. For this purpose, advanced model functions, i.e., those suitable for fitting the experimental mass peak profiles, are used. In addition, the peak positions, peak shapes, abundances, and ion ratios are the parameters considered for building these functions. In the case of a multielement magnetron target, the calibration of the mass spectra with respect to the peak shape and position on the m/z scale is helpful in reducing the number of free variables during fitting. The mass spectra fitting procedure is validated by the obtained isotopic abundances of W ions in W/Ar magnetron plasmas, which, in turn, are comparable with their natural abundance. Moreover, its usefulness is exemplified by calculating the ratio of WH+/W+ ions in W/Ar/H2 plasma. This work paves the way for obtaining relevant results regarding ion species in plasma even in the case of using general-purpose mass spectrometers with limited resolution and accuracy. Although this method is illustrated for the W/Ar/H2 plasma system, it can be easily extendable to any plasma type.

3.
Heliyon ; 9(3): e13849, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36895402

RESUMEN

Background: Based on the current configuration of the International Thermonuclear Experimental Reactor, tungsten (W) was chosen as the armour material. Nevertheless, during operation, the expected power and temperature of plasma can trigger the formation of W dust in the plasma chamber. According to the scenario for a Loss Of Vacuum Accident (LOVA), in the case of confinement failure dust is released, which can lead to occupational or accidental exposure. Methods: For a first evidence of potential risks, fusion devices relevant W dust has been produced on purpose, using a magnetron sputtering gas aggregation source. We aimed to assess the in vitro cytotoxicity of synthesized tungsten nanoparticles (W-NPs) with diameters of 30 and 100 nm, on human BJ fibroblasts. That was systematically investigated using different cytotoxic endpoints (metabolic activity, cellular ATP, AK release and caspase-3/7 activity) and by direct observation with optical and scanning electron microscopy. Results: Increasing concentrations of W-NPs of both sizes induced cell viability decrease, but the effect was significantly higher for large W-NPs, starting from 200 µg/mL. In direct correlation with the effect on the cell membrane integrity, high concentrations of large W-NPs appear to increase AK release in the first 24 h of treatment. On the other hand, activation of the cellular caspase 3/7 was found significantly increased after 16 h of treatment solely for low concentrations of small W-NPs. SEM images revealed an increased tendency of agglomeration of small W-NPs in liquid medium, but no major differences in cells development and morphology were observed after treatment. An apparent internalization of nanoparticles under the cell membrane was also identified. Conclusion: These results provide evidence for different toxicological outputs identified as mechanistic responses of BJ fibroblasts to different sizes of W-NPs, indicating also that small W-NPs (30 nm) display lower cytotoxicity compared to larger ones (100 nm).

4.
Membranes (Basel) ; 12(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363619

RESUMEN

The cathode microporous layer (MPL), as one of the key components of the proton exchange membrane fuel cell (PEM-FC), requires specialized carbon materials to ensure the two-phase flow and interfacial effects. In this respect, we designed a novel MPL based on highly hydrophobic carbon nanowalls (CNW). Employing plasma-assisted chemical vapor deposition techniques directly on carbon paper, we produced high-quality microporous layers at a competitive yield-to-cost ratio with distinctive MPL properties: high porosity, good stability, considerable durability, high hydrophobicity, and substantial conductivity. The specific morphological and structural properties were determined by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Thermo-gravimetric analysis was employed to study the nanostructures' thermal stability and contact angle measurements were performed on the CNW substrate to study the hydrophobic character. Platinum ink, serving as a fuel cell catalyst, was sprayed directly onto the MPLs and incorporated in the FC assembly by hot-pressing against a polymeric membrane to form the membrane-electrode assembly and gas diffusion layers. Single-fuel-cell testing, at moderate temperature and humidity, revealed improved power performance comparable to industrial quality membrane assemblies (500 mW cm-2 mg-1 of cathodic Pt load at 80 °C and 80% RH), with elevated working potential (0.99 V) and impeccable fuel crossover for a low-cost system.

5.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335413

RESUMEN

In the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The present contribution reports on the use of the specific surface property of a thermoresponsive polymer poly(N-isopropylacrylamide) pNIPAAM obtained by spin coating in combination with plasma treatment for tuning cell behavior on treated polymeric surfaces. Topographical information for the plasma-treated pNIPAAM coatings obtained by Atomic Force Microscopy (AFM) measurements evidenced a more compact surface for Ar treatment due to combined etching and redeposition, while for oxygen, a clear increase of pores diameter is noticed. The chemical surface composition as determined by X-ray Photoelectron Spectroscopy showed the specific modifications induced by plasma treatment, namely strong oxidation for oxygen plasma treatment illustrated by eight times increase of O-C=O contribution and respectively an increase of C-N/O=C-N bonds in the case of ammonia plasma treatment. Structural information provided by FTIR spectroscopy reveals a significant increase of the carboxylic group upon argon and mostly oxygen plasma treatment and the increase in width and intensity of the amide-related groups for the ammonia plasma treatment. The biological investigations evidenced that L929 fibroblast cells viability is increased by 25% upon plasma treatment, while the cell attachment is up to 2.8 times higher for the oxygen plasma-treated surface compared to the initial spin-coated pNIPAAM. Moreover, the cell detachment process proved to be up to 2-3 times faster for the oxygen and argon plasma-treated surfaces and up to 1.5 times faster for the ammonia-treated surface. These results show the versatility of plasma treatment for inducing beneficial chemical modifications of pNIPAAM surfaces that allows the tuning of cellular response for improving the attachment-detachment process in view of tissue engineering.

6.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884908

RESUMEN

Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F-) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Durapatita/química , Fluoruros/farmacología , Gases em Plasma/farmacología , Presión Atmosférica , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Fluoruros/química , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Gases em Plasma/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
7.
Nanomaterials (Basel) ; 11(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805134

RESUMEN

We present hybrid nanomaterial architectures, consisting of carbon nanowalls (CNW) templates decorated with tungsten oxide nanoparticles, synthesized using a mechanism based on tungsten oxide sublimation, vapor transport, followed by vapor condensation, in the absence or presence of plasma. The key steps in the decoration mechanism are the sublimation of tungsten oxides, when are exposed in vacuum at high temperature (800 °C), and their redeposition on colder surfaces (400-600 °C). The morphology and chemical composition of the hybrid architectures, as obtained from Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy, are discussed with respect to substrate nature and the physical conditions of synthesis. We pointed out that the decoration process is strongly dependent on the temperature of the CNW templates and plasma presence. Thus, the decoration process performed with plasma was effective for a wider range of template temperatures, in contrast with the decoration process performed without plasma. The results are useful for applications using the sensing and photochemical properties of tungsten oxides, and have also relevance for fusion technology, tungsten walls erosion and material redeposition being widely observed in fusion machines.

8.
Polymers (Basel) ; 12(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32646005

RESUMEN

Microcrystalline cellulose (MCC) was surface modified by two approaches, namely a plasma treatment in liquid using a Y-shaped tube for oxygen flow (MCC-P) and a TEMPO mediated oxidation (MCC-T). Both treatments led to the surface functionalization of cellulose as illustrated by FTIR and XPS results. However, TEMPO oxidation had a much stronger oxidizing effect, leading to a decrease of the thermal stability of MCC by 80 °C. Plasma and TEMPO modified celluloses were incorporated in a poly(3-hydroxybutyrate) (PHB) matrix and they influenced the morphology, thermal, and mechanical properties of the composites (PHB-MCC-P and PHB-MCC-T) differently. However, both treatments were efficient in improving the fiber-polymer interface and the mechanical properties, with an increase of the storage modulus of composites by 184% for PHB-MCC-P and 167% for PHB-MCC-T at room temperature. The highest increase of the mechanical properties was observed in the composite containing plasma modified cellulose although TEMPO oxidation induced a much stronger surface modification of cellulose. This was due to the adverse effect of more advanced degradation in this last case. The results showed that Y-shaped plasma jet oxidation of cellulose water suspensions is a simple and cheap treatment and a promising method of cellulose functionalization for PHB and other biopolymer reinforcements.

9.
Polymers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717998

RESUMEN

Polymer-based nanocomposites have recently received considerable attention due to their unique properties, which makes them feasible for applications in optics, sensors, energy, life sciences, etc. The present work focuses on the synthesis of nanocomposites consisting of a polytetrafluorethylene-like matrix in which metallic nano-silver are embedded, by using multiple magnetron plasmas. By successively exposing the substrate to separate RF magnetrons using as combination of target materials polytetrafluorethylene (PTFE) and silver, individual control of each deposition process is insured, allowing obtaining of structures in which silver nanoparticles are entrapped in-between two PTFE layers with given thicknesses. The topographical and morphological characteristics investigated by means of Scanning Electron Microscopy and Atomic Force Microscopy techniques evidenced the very presence of Ag nanoparticles with typical dimension 7 nm. The chemical composition at various depositing steps was evaluated through X-ray Photoelectron Spectroscopy. We show that the presence of the top PTFE layer prevents silver oxidation, while its thickness allows the tailoring of optical properties, as evidenced by spectroellipsometry. The appearance of chemical bonds between silver atoms and PTFE atoms at interfaces is observed, pointing out that despite of pure physical deposition processes, a chemical interaction between the polymeric matrix and metal is promoted by plasma.

10.
Nanomaterials (Basel) ; 10(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224934

RESUMEN

Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.6) due to the different oxidation states of PA66 surface interacting with PVP-AgNPs, as demonstrated by X-Ray Photoelectron Spectroscopy (XPS) analysis. Spray method using the water-suspended PVP-AgNPs onto DBD plasma-treated samples is much faster, less agglomerating and uses 10 times less PVP-AgNPs dispersion than the exhaustion method to obtain an antimicrobial effect in both S. aureus and E. coli.

11.
Materials (Basel) ; 13(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183006

RESUMEN

Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.

12.
Nanomaterials (Basel) ; 9(9)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480309

RESUMEN

Tungsten was chosen as a wall component to interact with the plasma generated by the International Thermonuclear Experimental fusion Reactor (ITER). Nevertheless, during plasma operation tritiated tungsten nanoparticles (W-NPs) will be formed and potentially released into the environment following a Loss-Of-Vacuum-Accident, causing occupational or accidental exposure. We therefore investigated, in the bronchial human-derived BEAS-2B cell line, the cytotoxic and epigenotoxic effects of two types of ITER-like W-NPs (plasma sputtering or laser ablation), in their pristine, hydrogenated, and tritiated forms. Long exposures (24 h) induced significant cytotoxicity, especially for the hydrogenated ones. Plasma W-NPs impaired cytostasis more severely than the laser ones and both types and forms of W-NPs induced significant micronuclei formation, as shown by cytokinesis-block micronucleus assay. Single DNA strand breaks, potentially triggered by oxidative stress, occurred upon exposure to W-NPs and independently of their form, as observed by alkaline comet assay. After 24 h it was shown that more than 50% of W was dissolved via oxidative dissolution. Overall, our results indicate that W-NPs can affect the in vitro viability of BEAS-2B cells and induce epigenotoxic alterations. We could not observe significant differences between plasma and laser W-NPs so their toxicity might not be triggered by the synthesis method.

13.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126109

RESUMEN

Although the origin and possible mechanisms for green and yellow emission from different zinc oxide (ZnO) forms have been extensively investigated, the same for red/orange PL emission from ZnO nanorods (nR) remains largely unaddressed. In this work, vertically aligned zinc oxide nanorods arrays (ZnO nR) were produced using hydrothermal process followed by plasma treatment in argon/sulfur hexafluoride (Ar/SF6) gas mixture for different time. The annealed samples were highly crystalline with ~45 nm crystallite size, (002) preferred orientation, and a relatively low strain value of 1.45 × 10-3, as determined from X-ray diffraction pattern. As compared to as-deposited ZnO nR, the plasma treatment under certain conditions demonstrated enhancement in the room temperature photoluminescence (PL) emission intensity, in the visible orange/red spectral regime, by a factor of 2. The PL intensity enhancement induced by SF6 plasma treatment may be attributed to surface chemistry modification as confirmed by X-ray photoelectron spectroscopy (XPS) studies. Several factors including presence of hydroxyl group on the ZnO surface, increased oxygen level in the ZnO lattice (OL), generation of F-OH and F-Zn bonds and passivation of surface states and bulk defects are considered to be active towards red/orange emission in the PL spectrum. The PL spectra were deconvoluted into component Gaussian sub-peaks representing transitions from conduction-band minimum (CBM) to oxygen interstitials (Oi) and CBM to oxygen vacancies (VO) with corresponding photon energies of 2.21 and 1.90 eV, respectively. The optimum plasma treatment route for ZnO nanostructures with resulting enhancement in the PL emission offers strong potential for photonic applications such as visible wavelength phosphors.

14.
Sci Rep ; 8(1): 15473, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341312

RESUMEN

Submerged liquid plasma (SLP) is a new and promising method to modify powder materials. Up to now, this technique has been mostly applied to carbonaceous materials, however, SLP shows great potential as a low-cost and environmental-friendly method to modify cellulose. In this work we demonstrate the modification of microcrystalline cellulose (MCC) by applying the SLP combined with ultrasonication treatments. The plasma generated either in an inert (argon) or reactive (argon: oxygen or argon:nitrogen) gas was used in MCC dispersions in water or acetonitrile:water mixtures. An enhanced defibrillation of MCC has been observed following the application of SLP. Furthermore, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy have been applied to investigate the surface functionalization of MCC with oxygen or nitrogen moieties. Depending on the plasma treatment applied, poly (3-hydroxybutyrate) composites fabricated with the plasma modified cellulose fibers showed better thermal stability and mechanical properties than pristine PHB. This submerged liquid plasma processing method offers a unique approach for the activation of cellulose for defibrillation and functionalization, aiming towards an improved reinforcing ability of biopolymers.


Asunto(s)
Celulosa/química , Gases em Plasma/química , Butiratos/química , Celulosa/ultraestructura , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura , Termogravimetría , Difracción de Rayos X
15.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949943

RESUMEN

Tailoring the surface properties of nanocellulose to improve the compatibility of components in polymer nanocomposites is of great interest. In this work, dispersions of nanocellulose in water and acetonitrile were functionalized by submerged plasmas, with the aim of increasing the quality of this reinforcing agent in biopolymer composite materials. Both the morphology and surface chemistry of nanocellulose were influenced by the application of a plasma torch and filamentary jet plasma in a liquid suspension of nanocellulose. Depending on the type of plasma source and gas mixture the surface chemistry was modified by the incorporation of oxygen and nitrogen containing functional groups. The treatment conditions which lead to nanocellulose based polymer nanocomposites with superior mechanical properties were identified. This work provides a new eco-friendly method for the surface functionalization of nanocellulose directly in water suspension, thus overcoming the disadvantages of chemical treatments.

17.
Polymers (Basel) ; 10(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30961174

RESUMEN

In this work, a new eco-friendly method for the treatment of poly(3-hydroxybutyrate) (PHB) as a candidate for food packaging applications is proposed. Poly(3-hydroxybutyrate) was modified by bacterial cellulose nanofibers (BC) using a melt compounding technique and by plasma treatment or zinc oxide (ZnO) nanoparticle plasma coating for better properties and antibacterial activity. Plasma treatment preserved the thermal stability, crystallinity and melting behavior of PHB‒BC nanocomposites, regardless of the amount of BC nanofibers. However, a remarkable increase of stiffness and strength and an increase of the antibacterial activity were noted. After the plasma treatment, the storage modulus of PHB having 2 wt % BC increases by 19% at room temperature and by 43% at 100 °C. The tensile strength increases as well by 21%. In addition, plasma treatment also inhibits the growth of Staphylococcus aureus and Escherichia coli by 44% and 63%, respectively. The ZnO plasma coating led to important changes in the thermal and mechanical behavior of PHB‒BC nanocomposite as well as in the surface structure and morphology. Strong chemical bonding of the metal nanoparticles on PHB surface following ZnO plasma coating was highlighted by infrared spectroscopy. Moreover, the presence of a continuous layer of self-aggregated ZnO nanoparticles was demonstrated by scanning electron microscopy, ZnO plasma treatment completely inhibiting growth of Staphylococcus aureus. A plasma-treated PHB‒BC nanocomposite is proposed as a green solution for the food packaging industry.

18.
Molecules ; 21(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983598

RESUMEN

Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.


Asunto(s)
Flúor/química , Gases em Plasma , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
19.
Mater Sci Eng C Mater Biol Appl ; 48: 118-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25579904

RESUMEN

The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro.


Asunto(s)
Carbono/química , Macrófagos/fisiología , Nanoestructuras/química , Actinas/metabolismo , Animales , Materiales Biocompatibles/química , Adhesión Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CCL3/metabolismo , Citoesqueleto/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Inflamatorias de Macrófagos/metabolismo , Macrófagos/citología , Ratones , Nitrógeno/química , Oxígeno/química , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...