Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(7): 2956-2970, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196966

RESUMEN

Three receptor tyrosine kinases (RTKs), c-MET, EGFR, and VEGFR-2 have been identified as potential oncogenic targets involved in tumor development, metastasis, and invasion. Designing inhibitors that can simultaneously interact with multiple targets is a promising approach, therefore, inhibiting these three RTKs with a single chemical component might give an effective chemotherapeutic strategy for addressing the disease while limiting adverse effects. The in-silico methods have been developed to identify the polypharmacological inhibitors particularly for drug repurposing and multitarget drug design. Here, to find a viable inhibitor from natural source against these three RTKs, structure-based pharmacophore mapping and virtual screening of SN-II database were carried out. The filtered compound SN00020821, identified as Cedeodarin, from different computational approaches, demonstrated good interactions with all the three targets, c-MET/EGFR/VEGFR-2, with interaction energies of -42.35 kcal/mol, -49.32 kcal/mol and -44.83 kcal/mol, respectively. SN00020821displayed stable key interactions with critical amino acids of all the three receptors' kinase catalytic domains including "DFG motif" explored through the MD simulations. Furthermore, it also met the ADMET requirements and was determined to be drug-like as predicted from the Lipinski's rule of five and Veber's rule. Finally, SN00020821 provides a novel molecular scaffold that could be investigated further as a polypharmacological anticancer therapeutic candidate that targets the three RTKs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Productos Biológicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Farmacóforo , Receptores ErbB/metabolismo
2.
Herz ; 44(2): 138-146, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30747234

RESUMEN

Mutations in extracellular matrix and smooth muscle cell contractile proteins predispose to thoracic aortic aneurysms in Marfan syndrome (MFS) and related disorders. These genetic alterations lead to a compromised extracellular matrix-smooth muscle cell contractile unit. The abnormal aortic tissue responds with defective mechanosensing under hemodynamic stress. Aberrant mechanosensing is associated with transforming growth factor-beta (TGF-ß) hyperactivity, enhanced angiotensin-II (Ang-II) signaling, and perturbation of other cellular signaling pathways. The downstream consequences include enhanced proteolytic activity, expression of inflammatory cytokines and chemokines, infiltration of inflammatory cells in the aortic wall, vascular smooth muscle cell apoptosis, and medial degeneration. Mouse models highlight aortic inflammation as a contributing factor in the development of aortic aneurysms. Anti-inflammatory drugs and antioxidants can reduce aortic oxidative stress that prevents aggravation of aortic disease in MFS mice. Targeting TGF-ß and Ang-II downstream signaling pathways such as ERK1/2, mTOR, PI3/Akt, P38/MAPK, and Rho kinase signaling attenuates disease pathogenesis. Aortic extracellular matrix degradation and medial degeneration were reduced upon inhibition of inflammatory cytokines and matrix metalloproteinases, but the latter lack specificity. Treating inflammation associated with aortic aneurysms in MFS and related disorders could prove to be beneficial in limiting disease pathogenesis.


Asunto(s)
Aneurisma de la Aorta Torácica , Inflamación , Síndrome de Marfan , Animales , Aneurisma de la Aorta Torácica/inmunología , Síndrome de Marfan/inmunología , Ratones , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...