Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994774

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the certain of the cell proliferation assay data shown in Fig. 4C on p. 1444 were strikingly similar to data appearing in different form in another article written by different authors at different research institutes, which had already been submitted for publication [Shi N, Shan B, Song Y, Chu H and Qian L: Circular RNA circ­PRKCI functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR­3680­3p in esophageal squamous cell carcinoma. J Cell Biochem 120: 10021­10030, 2019]. Owing to the fact that the contentious data in the above article were already under consideration for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 21: 1439­1448, 2020; DOI: 10.3892/mmr.2020.10957].

2.
Environ Sci Technol ; 58(28): 12609-12620, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38973247

RESUMEN

Sulfamethoxazole (SMX) passes through conventional wastewater treatment plants (WWTPs) mainly unaltered. Under anoxic conditions sulfate-reducing bacteria can transform SMX but the fate of the transformation products (TPs) and their prevalence in WWTPs remain unknown. Here, we report the anaerobic formation and aerobic degradation of SMX TPs. SMX biotransformation was observed in nitrate- and sulfate-reducing enrichment cultures. We identified 10 SMX TPs predominantly showing alterations in the heterocyclic and N4-arylamine moieties. Abiotic oxic incubation of sulfate-reducing culture filtrates led to further degradation of the major anaerobic SMX TPs. Upon reinoculation under oxic conditions, all anaerobically formed TPs, including the secondary TPs, were degraded. In samples collected at different stages of a full-scale municipal WWTP, anaerobically formed SMX TPs were detected at high concentrations in the primary clarifier and digested sludge units, where anoxic conditions were prevalent. Contrarily, their concentrations were lower in oxic zones like the biological treatment and final effluent. Our results suggest that anaerobically formed TPs were eliminated in the aerobic treatment stages, consistent with our observations in batch biotransformation experiments. More generally, our findings highlight the significance of varying redox states determining the fate of SMX and its TPs in engineered environments.


Asunto(s)
Sulfametoxazol , Aguas Residuales , Sulfametoxazol/metabolismo , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/metabolismo , Aerobiosis
3.
J Hazard Mater ; 476: 134984, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943891

RESUMEN

As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.

4.
World J Clin Cases ; 12(17): 3053-3060, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898843

RESUMEN

BACKGROUND: Subchorionic hematoma (SCH) is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane. SCH can lead to adverse pregnancy outcomes such as miscarriage, preterm birth, and other complications. Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes. AIM: To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis (VOCAL) in measuring the volume ratio of SCH to gestational sac (GS) combined with serum progesterone on early pregnancy outcomes in patients with SCH. METHODS: A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled. All patients were followed up until a gestational age of 20 wk. The parameters of transvaginal two-dimensional ultrasound, including the circumference of SCH (Cs), surface area of SCH (Ss), circumference of GS (Cg), and surface area of GS (Sg), and the parameters of VOCAL with transvaginal three-dimensional ultrasound, including the three-dimensional volume of SCH (3DVs) and GS (3DVg), were recorded. The size of the SCH and its ratio to the GS size (Cs/Cg, Ss/Sg, 3DVs/3DVg) were recorded and compared. RESULTS: Compared with those in the normal pregnancy group, the adverse pregnancy group had higher Cs/Cg, Ss/Sg, and 3DVs/3DVg ratios (P < 0.05). When 3DVs/3DVg was 0.220, the highest predictive performance predicted adverse pregnancy outcomes, resulting in an AUC of 0.767, and the sensitivity, specificity were 70.2%, 75% respectively. VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients, with a high sensitivity of 82.1% and a specificity of 72.1%, which showed a significant difference between AUC. CONCLUSION: VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH, while combined serum progesterone better predicts adverse pregnancy outcomes.

5.
Magn Reson Chem ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867454

RESUMEN

Copper(II) chloride anionic coordination complexes with different imidazole-derived ligands due to the potential cytotoxic activity play the important role in protein. By investigating the experimental electron paramagnetic resonance (EPR) and ultraviolet-visible (UV-vis) spectra of [CuCl(C6H10N2)4]Cl, [CuCl(C6H10N2)4]Cl, [CuCl2(C4H6N2)4], and [Cu2Cl2(C5H8N2)6]Cl2·2H2O, the local structure of the corresponding Cu2+ centers and the role of different ligands are obtained. Based on the well-agreed EPR parameters and the d-d transitions (10Dq), the four Cu2+ centers show tetragonal and orthorhombic distortion, corresponding to the different anisotropies of EPR signals. In addition, the general rules of governing the impact of methanol in imidazolylalkyl derivatives are also discussed, especially the influence on the local environment (symmetry, distortion, covalency, and crystal field) of above four copper(II) chloride anionic coordination complexes. Therefore, the obtained results in this study will be beneficial to provide a theoretical basis for the experimental design of desired copper-containing imidazolyl alkyl derivatives.

6.
Ultrason Sonochem ; 107: 106927, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820934

RESUMEN

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.


Asunto(s)
Bombyx , Pupa , Agua , Animales , Pupa/microbiología , Agua/química , Bombyx/química , Ondas Ultrasónicas , Fenómenos Químicos , Antioxidantes/química , Antioxidantes/farmacología , Biodiversidad
7.
Adv Sci (Weinh) ; 11(19): e2309873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482743

RESUMEN

Metasurfaces have shown unparalleled controllability of electromagnetic (EM) waves. However, most of the metasurfaces need external spatial feeding sources, which renders practical implementation quite challenging. Here, a low-profile programmable metasurface with 0.05λ0 thickness driven by guided waves is proposed to achieve dynamic control of both amplitude and phase simultaneously. The metasurface is fed by a guided wave traveling in a substrate-integrated waveguide, avoiding external spatial sources and complex power divider networks. By manipulating the state of the p-i-n diodes embedded in each meta-atom, the proposed metasurface enables 1-bit amplitude switching between radiating and nonradiating states, as well as a 1-bit phase switching between 0° and 180°. As a proof of concept, two advanced functionalities, namely, low sidelobe-level beam scanning and Airy beam generation, are experimentally demonstrated with a single platform operating in the far- and near-field respectively. Such complex-amplitude, programmable, and low-profile metasurfaces can overcome integration limitations of traditional metasurfaces, and open up new avenues for more accurate and advanced EM wave control within an unprecedented degree of freedom.

8.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373236

RESUMEN

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Asunto(s)
Chloroflexi , Contaminantes Ambientales , Ecosistema , Bacterias/genética , Respiración , Familia de Multigenes , Biodegradación Ambiental
9.
Medicine (Baltimore) ; 103(7): e37311, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363887

RESUMEN

Since the coronavirus disease 2019 (COVID-19) epidemic, insomnia has become one of the longer COVID-19 symptoms. This study aimed to investigate insomnia among COVID-19 survivors and explore the occurrence and influencing factors of insomnia. A cross-sectional study was performed from December 2022 to February 2023 through an online questionnaire star survey with 8 questions. The insomnia severity index scale (ISI) was used to assess the severity of insomnia. Univariate analysis was used to analyze the factors related to COVID-19 infection. A total of 564 participants (183 males and 381 females) were surveyed in the present study. The prevalence of insomnia was 63.12%. Among these insomnia patients, there were 202 (35.82%) with sub-threshold symptoms, 116 (20.57%) with moderate symptoms, and 38 (6.74%) with severe symptoms. Univariate analysis indicated that there were statistically significant differences in the prevalence of insomnia among COVID-19 survivors of different ages, occupations, and educational levels (P < .05). Of the 356 insomnia patients, 185 (51.97%) did not take any measures against insomnia, while those who took drugs only, physical exercise only, drugs and physical exercise, and other measures were 90 (25.28%), 42 (11.80%), 17 (4.78%), and 22 (6.18%), respectively. Additionally, of the 107 insomnia patients with drug therapy, 17 (15.89%) took estazolam, 16 (14.95%) took alprazolam, 39 (36.45%) took zopiclone, and 35 (32.71%) took other drugs to improve insomnia symptoms. The prevalence of insomnia symptoms remains high among COVID-19 survivors in China. Education level and occupation may be the influencing factors. Unfortunately, most patients with insomnia do not take corresponding treatment measures.


Asunto(s)
COVID-19 , Trastornos del Inicio y del Mantenimiento del Sueño , Masculino , Femenino , Humanos , COVID-19/epidemiología , Estudios Transversales , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , SARS-CoV-2 , Ansiedad/epidemiología , Depresión/epidemiología
10.
J Hazard Mater ; 465: 133066, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38042007

RESUMEN

Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, ·OH, O2-, 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.


Asunto(s)
Insecticidas , Plaguicidas , Gases em Plasma , Humanos , Abejas , Animales , Ratones , Insecticidas/química , Especies Reactivas de Oxígeno , Estructura Molecular , Peróxido de Hidrógeno , Neonicotinoides/química , Nitrocompuestos/química , Nitrocompuestos/farmacología
11.
Appl Opt ; 62(30): 8143-8149, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038111

RESUMEN

S b 2 S e 3 is an emerging material in recent years, and past studies have shown that it has good optoelectronic properties when doped with metals. In this paper, pure S b 2 S e 3 films and N i-S b 2 S e 3 films with different doping contents (1, 2, 3 W) were prepared by magnetron sputtering technology. The nonlinear optics properties of the sample films were investigated using femtosecond (fs) Z-scan technology under 800 nm. The results showed that both pure S b 2 S e 3 and doped films exhibited reverse saturated absorption (RSA), and the occurrence of the reverse saturated absorption behavior of the doped films was mainly due to two-photon absorption (TPA), free carrier absorption (FCA), and the presence of defective energy levels. Compared with pure S b 2 S e 3 films, N i-S b 2 S e 3 films exhibit significantly enhanced nonlinear absorption properties and nonlinear refractive properties. By increasing Ni sputtering power and incident laser energy, the nonlinear optic properties of N i-S b 2 S e 3 films are enhanced. By testing the sample films using SEM, XRD, and UV-Vis techniques, we found that Ni metal doping greatly improved and optimized the crystallinity of the films and adjusted the optical band gap.

12.
Nat Commun ; 14(1): 7698, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001060

RESUMEN

A wide range of Cu(II)-catalyzed C-H activation reactions have been realized since 2006, however, whether a C-H metalation mechanism similar to Pd(II)-catalyzed C-H activation reaction is operating remains an open question. To address this question and ultimately develop ligand accelerated Cu(II)-catalyzed C-H activation reactions, realizing the enantioselective version and investigating the mechanism is critically important. With a modified chiral BINOL ligand, we report the first example of Cu-mediated enantioselective C-H activation reaction for the construction of planar chiral ferrocenes with high yields and stereoinduction. The key to the success of this reaction is the discovery of a ligand acceleration effect with the BINOL-based diol ligand in the directed Cu-catalyzed C-H alkynylation of ferrocene derivatives bearing an oxazoline-aniline directing group. This transformation is compatible with terminal aryl and alkyl alkynes, which are incompatible with Pd-catalyzed C-H activation reactions. This finding provides an invaluable mechanistic information in determining whether Cu(II) cleaves C-H bonds via CMD pathway in analogous manner to Pd(II) catalysts.

13.
Neurol Sci ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985633

RESUMEN

OBJECTIVES: Transcranial sonography has been used as a valid neuroimaging tool to diagnose Parkinson's disease (PD). This study aimed to develop a modified transcranial sonography (TCS) technique based on a deep convolutional neural network (DCNN) model to predict Parkinson's disease. METHODS: This retrospective diagnostic study was conducted using 1529 transcranial sonography images collected from 854 patients with PD and 775 normal controls admitted to the Second Affiliated Hospital of Soochow University (Suzhou, Jiangsu, China) between September 2019 and May 2022. The data set was divided into training cohorts (570 PD patients and 541 normal controls), and the validation set (184 PD patients and 234 normal controls). Using these datasets, we developed four different DCNN models (ResNet18, ResNet50, ResNet152, and DenseNet121). We then assessed their diagnostic performance, including the area under the receiver operating characteristic (AUROC) curve, specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and F1 score and compared with traditional diagnostic criteria. RESULTS: Among the 1529 TCS images, 570 PD patients and 541 normal controls from 4 of 6 sonographers of the TCS team were selected as the training cohort, and 184 PD patients and 234 normal controls from the other 2 sonographers were chosen as the validation cohort. There were no sex and age differences between PD patients and normal control subjects in the training and validation cohorts (P values > 0.05). All DCNN models achieved good performance in distinguishing PD patients from normal control subjects on the validation datasets, with diagnostic AUROCs and accuracy of 0.949 (95% CI 0.925, 0.965) and 86.60 for the RestNet18 model, 0.949 (95% CI 0.929, 0.971) and 87.56 for ResNet50, 0.945 (95% CI 0.931, 0.969) and 88.04 for ResNet152, 0.953 (95% CI 0.935, 0.971) and 87.80 for DenseNet121, respectively. On the other hand, the diagnostic accuracy of the traditional diagnostic method was 82.30. The accuracy of all DCNN models was higher than that of traditional diagnostic method. Moreover, the 5k-fold cross-validation results in train datasets showed that these DCNN models are robust. CONCLUSION: The developed transcranial sonography-based DCNN models performed better than traditional diagnostic criteria, thus improving the sonographer's accuracy in diagnosing PD.

14.
Ultrasound Med Biol ; 49(11): 2422-2427, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666708

RESUMEN

OBJECTIVE: The correlation between substantia nigra (SN) hyperechogenicity on transcranial sonography (TCS) and serum iron metabolism parameters in patients with the postural instability gait difficulty (PIGD) subtype of Parkinson's disease (PD) was investigated so as to explore the pathological mechanism of SN hyperechogenicity. METHODS: The study enrolled 95 PIGD patients recruited by the Parkinson's Disease Specialty in the Second Affiliated Hospital of Soochow University during June 2019-2021. On the basis of the TCS results, the PIGD patients were assigned to the PD with SN hyperechogenicity (SN+) group (n = 60) and PD without SN hyperechogenicity (SN-) group (n = 35). Meanwhile, 49 sex- and age-matched healthy individuals were included in the control group. All participants underwent blood tests. Differences in the iron metabolism parameters among the three groups and the correlation between SN hyperechogenicity and serum iron metabolism parameters were analyzed. RESULTS: Serum ferritin, ceruloplasmin and transferrin levels were lower in the SN+ and SN- groups than in the control group (all p values <0.001). The serum ceruloplasmin level was lower in the SN+ group (0.23 [0.20, 0.25] g/L) than in the SN- group (0.25 [0.22, 0.29] g/L) (p = 0.001), and the proportion of patients with an abnormal ceruloplasmin level was higher in the SN+ group than in the SN- group (43.3% [26/60] vs. 14.3% [5/35], χ2 = 8.484, p = 0.004). Moreover, the SN hyperechogenicity area was negatively correlated with the serum transferrin level (r = -0.428, p < 0.001). CONCLUSION: Decreased serum ceruloplasmin levels may be associated with SN hyperechogenicity development in PIGD patients. The SN hyperechogenicity area is negatively correlated with the serum transferrin level.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Ceruloplasmina , Marcha , Sustancia Negra/diagnóstico por imagen , Transferrinas , Hierro
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 923-928, 2023.
Artículo en Chino | MEDLINE | ID: mdl-37718397

RESUMEN

OBJECTIVES: To investigate the electroencephalogram (EEG) characteristics and progression of febrile infection-related epilepsy syndrome (FIRES) in children, aiming to enhance diagnosis and treatment approaches. METHODS: A retrospective analysis was conducted on 26 children with FIRES between May 2017 and December 2021. RESULTS: All 26 children (100%) presented with fever at the onset, followed by frequent convulsions that rapidly progressed into convulsive status. Ventilator support was required for 22 cases (85%). During the acute phase, EEG features demonstrated the disappearance of background activity and physiological sleep cycles in all children. Diffuse slow waves and multifocal slow spike slow waves were observed as abnormal waves during the interictal period. A characteristic pattern of focal low amplitude fast wave initiation was detected in all children during seizure episodes. In the chronic phase, the background EEG activity gradually recovered, and the presence of abnormal waves was relatively limited. The characteristic pattern of focal slow wave rhythm initiation was evident during seizure episodes. Additionally, extreme δ brushes were observed in four cases (15%). CONCLUSIONS: These findings suggest that EEG manifestations in children with FIRES exhibit distinctive patterns during the acute and chronic stages, providing significant value for early diagnosis and clinical staging. Extreme δ brushes may be one of the distinctive markers of children with FIRES.

16.
Elife ; 122023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724949

RESUMEN

Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.


Asunto(s)
Actinas , Fibroblastos , Animales , Humanos , Ratones , Actinas/metabolismo , Fibroblastos/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo
17.
Front Microbiol ; 14: 1223838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577448

RESUMEN

Xenobiotics often challenge the principle of microbial infallibility. One example is acesulfame introduced in the 1980s as zero-calorie sweetener, which was recalcitrant in wastewater treatment plants until the early 2010s. Then, efficient removal has been reported with increasing frequency. By studying acesulfame metabolism in alphaproteobacterial degraders of the genera Bosea and Chelatococcus, we experimentally confirmed the previously postulated route of two subsequent hydrolysis steps via acetoacetamide-N-sulfonate (ANSA) to acetoacetate and sulfamate. Genome comparison of wildtype Bosea sp. 100-5 and an acesulfame degradation-defective mutant revealed the involvement of two plasmid-borne gene clusters. The acesulfame-hydrolyzing sulfatase is strictly manganese-dependent and belongs to the metallo beta-lactamase family. In all degraders analyzed, it is encoded on a highly conserved gene cluster embedded in a composite transposon. The ANSA amidase, on the other hand, is an amidase signature domain enzyme encoded in another gene cluster showing variable length among degrading strains. Transposition of the sulfatase gene cluster between chromosome and plasmid explains how the two catabolic gene clusters recently combined for the degradation of acesulfame. Searching available genomes and metagenomes for the two hydrolases and associated genes indicates that the acesulfame plasmid evolved and spread worldwide in short time. While the sulfatase is unprecedented and unique for acesulfame degraders, the amidase occurs in different genetic environments and likely evolved for the degradation of other substrates. Evolution of the acesulfame degradation pathway might have been supported by the presence of structurally related natural and anthropogenic compounds, such as aminoacyl sulfamate ribonucleotide or sulfonamide antibiotics.

18.
Biomedicines ; 11(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509452

RESUMEN

BACKGROUND: Sepsis induces GAS5 expression in the vascular endothelium, but the molecular mechanism is unclear, as is the role of GAS5 in sepsis. METHODS AND RESULTS: We observed that GAS5 expression in the endothelium was significantly upregulated in a sepsis mouse model. ChIP-PCR and EMSA confirmed that the oxidative stress (OS)-activated MiT-TFE transcription factor (MITF, TFE3, and TFEB)-mediated GAS5 transcription. In vitro, GAS5 overexpression attenuated OS and inflammation in endothelial cells (ECs) while maintaining the structural and functional integrity of mitochondria. In vivo, GAS5 reduced tissue ROS levels, maintained vascular barrier function to reduce leakage, and ultimately attenuated sepsis-induced lung injury. Luciferase reporter assays revealed that GAS5 protected MITF from degradation by sponging miR-23, thereby forming a positive feedback loop consisting of MITF, GAS5, and miR-23. Despite the fact that the OS-activated MITF-GAS5-miR-23 loop boosted MITF-mediated p62 transcription, ECs do not need to increase mitophagy to exert mitochondrial quality control since MITF-mediated Nrf2 transcription exists. Compared to mitophagy, MITF-transcribed p62 prefers to facilitate the autophagic degradation of Keap1 through a direct interaction, thereby relieving the inhibition of Nrf2 by Keap1, indicating that MITF can upregulate Nrf2 at both the transcriptional and posttranscriptional levels. Following this, ChIP-PCR demonstrated that Nrf2 can also transcribe MITF, revealing that there is a reciprocal positive regulatory association between MITF and Nrf2. CONCLUSION: In sepsis, the ROS-activated MITF-GAS5-miR-23 loop integrated the antioxidant and autophagy systems through MITF-mediated transcription of Nrf2 and p62, which dynamically regulate the level and type of autophagy, as well as exert antioxidant and anti-inflammatory effects.

19.
Food Chem ; 429: 136832, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453333

RESUMEN

Based on the concept of circular economy, citrus peel was considered a valuable source of bioactive compounds for high-value foods. Electrohydrodynamic (EHD) drying is a novel technology appropriated for the dehydration of heat-sensitive products such as citrus peel. In current work, EHD drying of citrus peel was performed based on alternating current (AC) or direct current (DC) sources at various voltage levels (9, 18, 27, 36, and 45 kV). The effect of EHD on drying characteristics, water retention capacity, enzyme inactivation, phytochemical contents (phenolic compounds and carotenoids), and volatile compounds of citrus peel were evaluated and compared. Results showed that the drying time in the AC electric field was shorter compared to DC electric field at the same applied voltages due to the polarization layer formed by unipolar charges. The applied voltage determined electric field strength as well as the degree of tissue collapse and cell membrane rupture. EHD elucidated the transformation and degradation of phytochemicals including phenolic compounds, carotenoids, and volatile composition in proportion to the applied voltage. The findings indicate that EHD drying with AC improves drying behaviors, inactivates enzymes, and retains the phytochemical properties of citrus peel.


Asunto(s)
Citrus sinensis , Citrus , Citrus sinensis/química , Citrus/química , Extractos Vegetales/química , Carotenoides , Fenoles , Fitoquímicos
20.
Opt Express ; 31(9): 13923-13932, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157267

RESUMEN

Metasurfaces have exhibited versatile capacities of controlling electromagnetic (EM) waves due to the high degree of freedom of designing artificially engineered meta-atoms. For circular polarization (CP), broadband phase gradient metasurfaces (PGMs) can be realized based on P-B geometric phase by rotating meta-atoms; while for linear polarization (LP), realization of broadband phase gradients has to resort to P-B geometric phase during polarization conversion and polarization purity has to be sacrificed for broadband properties. It is still challenging to obtain broadband PGMs for LP waves without polarization conversion. In this paper, we propose the design of 2D PGMs by combining the inherently wideband geometric phases and non-resonant phases of meta-atom, under the philosophy of suppressing Lorentz resonances that usually bring about abrupt phase changes. To this end, an anisotropic meta-atom is devised which can suppress abrupt Lorentz resonances in 2D for both x- and y-polarized waves. For y-polarized waves, the central straight wire is in perpendicular to electric vector Ein of incident waves, Lorentz resonance cannot be excited although the electrical length approaches or even exceeds half a wavelength. For x-polarized waves, the central straight wire is in parallel with Ein, a split gap is opened on the center of the straight wire so as to avoid Lorentz resonance. In this way, the abrupt Lorentz resonances are suppressed in 2D and the wideband geometric phase and the gradual non-resonant phase are left for broadband PGM design. As a proof of concept, a 2D PGM prototype for LP waves was designed, fabricated and measured in microwave regime. Both simulated and measured results show that the PGM can achieve broadband beam deflection for reflected waves for both x- and y-polarized waves in broadband, without changing the LP state. This work provides a broadband route to 2D PGMs for LP waves and can be readily extended to higher frequencies such as terahertz and infrared regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...