Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927264

RESUMEN

Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.

2.
Environ Pollut ; 345: 123515, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346639

RESUMEN

As microplastics (MP) become ubiquitous, their interactions with heavy metals threatens the coral ecosystem. This study aimed to assess the combined toxicity of MP and copper (Cu) in the environment of coral. Goniopora columna was exposed to polyethylene microplastics (PE-MP) combined with Cu2+ at 10, 20, 50, 100, and 300 µg/L for 7 days. Polyp length and adaptability were recorded daily, and coral samples were collected at 1, 3, 5, and 7 days to analyse zooxanthellae density and antioxidant activity. Tissue observations and the analysis of MP and Cu2+ accumulation were conducted on the 7th day. After 1 day of exposure, PE-MP combined with different concentrations of Cu2+ significantly decreased polyp length and adaptability compared with PE-MP alone. Simultaneously, a significant increase in malondialdehyde (MDA) content, lead to coral oxidative stress, which was a combined effect with PE-MP. After 3 days of exposure, PE-MP combined with Cu2+ at >50 µg/L significantly reduced zooxanthellae density, damaging the coral's symbiotic relationship. In antioxidant enzyme activity, superoxide dismutase (SOD) activity decreased significantly after 1 day of exposure. After 3 days of exposure, glutathione peroxidase (GPx) activity significantly increased with Cu2+ at >20 µg/L. After 5 days of exposure, PE-MP combined with different concentrations of Cu2+ significantly reduced catalase (CAT), glutathione (GSH), and glutathione transferase (GST) activity, disrupting the antioxidant enzyme system, and acting antagonistically to PE-MP alone. Tissue observations revealed that the PE-MP combined with Cu2+ at >50 µg/L caused severe mesenteric atrophy, vacuolar, and Cu2+ accumulation in the coral mesenteric compared with PE-MP alone. The results suggest that combined exposure of PE-MP and copper leads to more severe oxidative stress, disruption antioxidant enzyme system, tissue damage, and Cu2+ accumulation, resulting in a significant maladaptation of corals to the environment.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Cobre/toxicidad , Antioxidantes/metabolismo , Microplásticos , Plásticos , Ecosistema , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
3.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 869-882, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38343181

RESUMEN

Sea urchin contains physiologically active substances, such as amino acids and unsaturated fatty acids, and an important aquatic organism. Purple sea urchin, one of the common edible sea urchins, is an important aquatic product. In order to supply the vast seafood market, large-scale aquaculture of sea urchins is very important. The aim of this study was to optimize the rearing of the Anthocidaris crassipina larvae enhancing the nutrition by mixing feed to improve their growth and survival. The survival rate of Chaetoceros muelleri feeding alone is only 40%. If the survival rate is improved through nutrient enrichment, the large-scale aquaculture of larvae can be promoted. The experiment was divided into two parts. Experiment 1: Two types of commonly used microalgae, Isochrysis galbana tml (I), C. muelleri (C) and two types of probiotics, Rhodopseudomonas palustris (R), and Saccharomyces cerevisiae (S) were used in the. Feeding amounts are 5000, 10,000, and 20,000 cell mL-1, and the control group (N) did not eat. Experiment 2: C. muelleri 20,000 cell mL-1 was mixed with I. galbana tml, R. palustris (R) and S. cerevisiae (S) at 5000 and 10,000 cell mL-1. After the experiment, body length, body width, stomach length, rudiment length, rudiment length, body composition, digestive enzymes and survival rate were measured to evaluate the best feed. The results showed that the mixed feeding of C. muelleri 20,000 cell mL-1 and R. palustris 5000 cell mL-1 can achieve the best development and survival of larval embryos and can promote metamorphosis into juveniles in the shortest time. The research results will be applied to the large-scale aquaculture of A. crassipina larvae to promote the diversity of aquaculture.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Acuicultura , Dieta , Larva , Probióticos , Erizos de Mar , Animales , Larva/crecimiento & desarrollo , Acuicultura/métodos , Alimentación Animal/análisis , Probióticos/farmacología , Probióticos/administración & dosificación , Dieta/veterinaria
4.
Chemosphere ; 297: 134113, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35227744

RESUMEN

Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L-1) of polyethylene microplastics (PE-MPs; 40-48 µm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L-1, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index. Humic- and fulvic-like substances were identified as critical EPS components produced by microbial activity. The results have shed new insights into short-term responses of G. columna during exposure to different PE-MP concentrations and reveal important coral-MP-microbiome interactions in coral reef ecosystems. Results demonstrated that the coral-MPs interactions should be further evaluated to gain a deeper understanding of the underlying ecotoxicological risks.


Asunto(s)
Antozoos , Microbiota , Contaminantes Químicos del Agua , Animales , Matriz Extracelular de Sustancias Poliméricas/química , Microplásticos/toxicidad , Plásticos , Polietileno/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Sci Total Environ ; 828: 154234, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245553

RESUMEN

In recent years, the increase of microplastics in the sea exerted a negative impact on coral health. This study has been undertaken to analyze the impact of microplastics on corals. Here, Goniopora columna was exposed to different concentrations of polyethylene microplastics (PE-MP). The daily polyps length and adaptability were recorded. Analysis of the zooxanthellae density and antioxidant activity of coral was done after 1, 3, 5 and 7 days. Further tissue morphology and accumulation of PE-MP were analyzed. The results showed that PE-MP at different concentrations can be adsorbed on the surface of corals and enter inside corals after 7 days. PE-MP at different concentrations reduced polyps length, adaptability and cause the changes in the density of zooxanthellae to be the reason for unbalancing of corals. PE-MP at different concentrations reduced the superoxide dismutase (SOD) activity after exposure to 1 day. PE-MP increased the catalase (CAT) activity at 100 mg/L after exposure; even after reducing the concentration has the same effect. PE-MP at various concentrations increased the glutathione peroxidase (GPx) activity after exposure to 5 and 7 days. It also increased the glutathione transferase (GST) and glutathione (GSH) activity after exposure to 5 and 7 days. PE-MP at different concentrations increased the malondialdehyde (MDA) content after exposure from 1 to 7 days. Analysis of tissue morphology and tissue accumulation shows that different concentrations of PE-MP cause mesenteric atrophy, vacuole, and accumulation in the coral mesenteric. These results indicate that the PE-MP can impact the antioxidant system and hampers the function of enzymes responsible for detoxification of G. columna, increase lipid peroxide content and also cause tissue damage through accumulating in the coral mesenteric.


Asunto(s)
Antozoos , Contaminantes Químicos del Agua , Animales , Antioxidantes , Microplásticos , Estrés Oxidativo , Plásticos , Polietileno/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Biology (Basel) ; 11(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35336784

RESUMEN

In recent years, climate change has often caused fluctuations in seawater salinity and temperature, which threaten the survival and growth of corals. Effectively improving the stress response to temperature and salinity changes in corals to prevent bleaching is one of the important issues. This study initially explored the use of artificial polyunsaturated fatty acids to assess the ability of Briareum violacea to slow bleaching, enhance growth, stabilize larval development and reduce antistress factors (superoxide dismutase and catalase) when they were exposed to temperature and salinity stress. The salinities used in the experiment were 25, 30, 35 and 40 psu, and the temperatures were 20, 25 and 30 °C. It was divided into two parts: Experiment 1-Effects of temperature and salinity and feeding on digestive enzymes, reproduction and stress response of B. violacea; Experiment 2-Effects of temperature and salinity and feeding on the settlement and survival of larvae. The results showed that the feeding treatment group reduced the superoxide dismutase, catalase and mortality of corals under stress and significantly improved larval development and larval settlement.

7.
Biology (Basel) ; 11(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336810

RESUMEN

Climate change is causing dramatic changes in global ocean temperature and salinity, threatening coral survival. Coral growth and metabolism are greatly affected by the temperature, salinity and feeding time of the environment. In order to explore the threats to coral survival caused by climate change, this study will investigate the changes in body composition, digestive enzymes and metabolism of G. columna at different temperatures and salinities. A maximum G. columna growth rate was observed at 25 °C and 30−35 psu salinity. The G. columna could survive in a wide salinity range of 25−40 psu. However, the maximum number and weight of G. columna polyps was determined at 30−35 psu. Furthermore, 30−35 psu salinity at 25 °C led to the best G. columna growth and survival, mainly because of their enhanced nutrient absorption rate, polyp expansion rate, metabolic rate and adaptability. Comparing various salinity-temperature treatment groups, all obtained values for growth, behavior and metabolism were significantly higher (p < 0.05) for 30 psu at 25 °C than other treatment groups resulting in maximum G. columna yield. In addition, the optimal timing of G. columna feeding was assessed by studying changes in body composition and digestive enzymes within 24 h of feeding. The results showed that G. columna has higher protein and protease activity between 6:00 a.m. to 12:00 noon. Therefore, at 25 °C, 30−35 psu and feeding will enhance G. columna growth and survival.

8.
Biology (Basel) ; 11(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205146

RESUMEN

In recent years, ciliate infections have caused serious casualties to corals in the ocean. Infected corals die within a short period of time, which not only poses a threat to wild coral reefs, but also has a major impact on large scale aquaculture of coral. Clove is a kind of Chinese medicine with antifungal, antibacterial, antiviral, insecticidal, and other functions. Clove is a natural product. If it can be used in the treatment of coral ciliates, it will reduce this threat to the environment. The clove extract was diluted with sterile seawater to 500 ppm, 1500 ppm, 2500 ppm, 5000 ppm, 7500 ppm, and 10,000 ppm to carry out virulence test on ciliates. The results show that the LC50 value is 1500 ppm, which can cause the death of ciliates in 10 min without causing significant changes in G. columna SOD, CAT, chlorophyll a, and zooxanthellae. In addition, observation of tissue slices revealed that no ciliates and vacuum were found in the G. columna tissue after 10 min of medicated bathing. In summary, 1500 ppm of clove extract can be used for the treatment of coral ciliates.

9.
Animals (Basel) ; 12(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35158630

RESUMEN

Goniopora columna is a stony coral valued for its reef-building potential and its unique appearance. Thus, identifying the optimal culture conditions for G. columna would enable efficient cultivation and prevent the illegal exploitation of marine resources. Light sources are crucial for the growth of corals because zooxanthellae provide them with basic nutrients through photosynthesis. Different corals and zooxanthellae have different photoacclimation characteristics; therefore, selecting a suitable light wavelength remains the key inhibitor of coral maintenance in marine aquariums. Accordingly, this study investigated the effects of different light wavelengths on G. columna. It was illuminated for 6 or 12 h a day under white light, yellow light, red light (LR), green light (LG), blue light (LB), or purple light (LP) for 8 weeks. During the experiment, R(R; i.e., a formula feed that combines sodium alginate, protein and probiotics) of 5% (w/v) of G. columna tissue and skeletal dry weight was fed every day. Coral polyps were counted, zooxanthellae density, chlorophyll a concentration, specific growth rates, and survival rates were calculated; polyp stretching and contractile behaviors were observed; and body composition and digestive enzyme activity were analyzed. LB or LP (but not LG or LR) illumination for at least 6 h per day significantly promoted the growth, survival, protein content, and protease activity of the G. columna specimens. Furthermore, coral polyp extension reached 100% after 30 min of LP and LB light irradiation. Although no significant differences in the zooxanthellae density or chlorophyll a concentration were noted under various light wavelengths, significant reductions were detected in the absence of light. To achieve energy-efficient coral aquaculture with regard to G. columna cultivation, 6 h of LB or LP illumination per day can improve the growth.

10.
Biology (Basel) ; 10(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34827209

RESUMEN

Ciliate infection is a serious parasitic disease of coral. Infected coral rots and dies in a short time. In addition to killing corals by infecting them in the oceans, ciliate infection also poses a threat to corals farmed on a large scale. In this study, two antioxidant enzymes (SOD and CAT) were used to judge the stress response in Goniopora columna after infection, and KCl and H2O2 were used to evaluate the therapeutic effect. The results showed that SOD and CAT increased during the early stage of infection but decreased with the extension of infection time. In terms of drug therapy, it was found that the treatment of ciliate infection with 1.5% of KCl had no significant effect on SOD and CAT of G. columna. The morphological changes of zooxanthellae, chlorophyll a, and coral were not significant. H2O2 leads to a stress response and polyp contraction. In conclusion, 1.5% of KCl can be used in the selection of drugs to treat ciliate infection.

11.
Animals (Basel) ; 11(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827743

RESUMEN

Nutritional requirements are critical in the process of coral aquaculture. In addition to energy from symbiotic algae, corals obtain sufficient nutrition through heterotrophic feeding. Microalgae and yeast are commonly used as nutritional supplements for many aquaculture organisms. In addition, if artificial feed can match or improve upon the nutritional supplementation provided by microalgae and yeast in the case of G. columna, then feeding this coral would be markedly easier. Hence, this article preliminarily discusses feeds suitable for G. columna. In this study, artificial PUFA rich in animal protein (R), Saccharomyces cerevisiae, Isochrysis galbana tml, and Nannochloropsis oculate were fed to G. columna at quantities of 5% and 10% of body weight. Growth, survival, body composition, and digestive enzymes were assessed. Regarding body composition, the coral's protein content is higher than that of carbohydrate or fat; thus, evaluating the heterotrophic nutrition of G. columna by using protein absorption is appropriate. The protease content is also high in digestive enzymes. Protein content, protease activity, and specific growth rate were significantly higher in the R group than in other groups. The number of polyps in the groups fed R at 5% and 10% of body weight increased by 40.00 ± 2.43 and 47.33 ± 0.89 number, respectively, significantly greater increases than those achieved in the other groups (p < 0.05). Changes in body composition and digestive enzymes over a 24-h period were compared to determine the optimal feeding time. Protein content and protease activity increased markedly between 6:00 and 12:00. The experimental results suggest that R can improve the activity of G. columna digestive enzymes and their protein and lipid content in body tissue, shorten the cultivation time, and enhance the profitability of coral aquaculture.

12.
Animals (Basel) ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34679869

RESUMEN

A comprehensive knowledge of relationships between coral and coral-associated organisms is essential for the conservation studies of the coral reef community, yet the biodiversity database of coral-inhabiting copepods remains incomplete. Here we surveyed in a widely distributed scleractinian coral, Psammocora columna Dana, 1846, and newly discovered two endoparasitic copepod species, Xarifiayanliaoensis sp. nov. and Xarifia magnifica sp. nov. These two new species are described based on specimens collected in Taiwan, and they share several common morphological characters of Xarifia copepods, i.e., region dorsal to fifth legs having three posteriorly directed processes unequally. However, X. yanliaoensis sp. nov. is distinguishable from other species by the morphology of the endopods of legs, antenna, maxilla, and maxilliped (in both genders). The morphological characters of X. magnifica sp. nov. are the endopods of legs, leg 5, and maxilliped in the male. Including the two new species described in the present work, the genus Xarifia Humes, 1960 belongs to the cyclopoid family Xarifiidae Humes, 1960 currently consists of 94 species, and eight of them live in association with the Psammocora coral. A comparison table and a key to the species of Xarifia from Psammocora corals are given herein.

13.
Protein Expr Purif ; 187: 105951, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34358651

RESUMEN

Nitrite levels are generally high in high-density aquaculture. Nitrite is a potential stress-inducing factor and can cause oxidative stress because excessive reactive oxygen species (ROS) formation through nitrite induction cannot be scavenged by the endogenous antioxidant system, thus leading to cell damage or death. Manganese Superoxide Dismutase (MnSOD) is a highly efficient endogenous ROS scavenger that quenches mitochondrial ROS and protective against oxidative stress. To enhance the efficiency of MnSOD in removing ROS and reducing oxidative caused by nitrite, in this study, we cloned grouper MnSOD (gMnSOD) fused with a cell-penetrating peptide, TAT, to construct a TAT-gMnSOD fusion protein and assessed its potential to eliminate excess ROS induced by high nitrite concentrations and enhance the resistance of zebrafish to environmental stressors. Our results revealed that TAT-gMnSOD penetrated the grouper fin (GF-1) cells, scavenged nitrite-induced intracellular ROS, and enhanced cell viability on NaNO2 treatment. Furthermore, pretreatment of zebrafish with TAT-gMnSOD fusion protein reduced the MDA content and increased the survival rate. In addition, the TAT-gMnSOD fusion protein reduced 2-phenoxyethanol toxicity and attenuated excessive anesthesia among zebrafish. In conlusion, our cell-permeable TAT-gMnSOD fusion protein effectively counters oxidative stress, prevents environmental stress-induced damage, and increases aquaculture benefits.


Asunto(s)
Antioxidantes/metabolismo , Nitritos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Lubina , Permeabilidad de la Membrana Celular , Péptidos de Penetración Celular/metabolismo , Escherichia coli , Glicoles de Etileno/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...