Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; : e0209724, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207107

RESUMEN

Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-ß production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE: Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.

2.
Vaccines (Basel) ; 12(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204071

RESUMEN

The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.

4.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38319105

RESUMEN

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Virus de la Fiebre Porcina Clásica , Mitofagia , Piruvato Quinasa , Serina-Treonina Quinasas TOR , Proteínas no Estructurales Virales , Replicación Viral , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Antivirales , Peste Porcina Clásica/metabolismo , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/crecimiento & desarrollo , Virus de la Fiebre Porcina Clásica/fisiología , Diseño de Fármacos , Glucólisis , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Piruvatos/metabolismo , Transducción de Señal , Porcinos/metabolismo , Porcinos/virología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
5.
Vaccines (Basel) ; 11(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896991

RESUMEN

Interferon (IFN) is a cell-secreted cytokine possessing biological activities including antiviral functioning, immune regulation, and others. Interferon-alpha (IFN-α) mainly derives from plasmacytoid dendritic cells, which activate natural killer cells and regulate immune responses. IFN-α responds to the primary antiviral mechanism in the innate immune system, which can effectively cure acute infectious diseases. Pseudorabies (PR) is an acute infectious disease caused by pseudorabies virus (PRV). The clinical symptoms of PRV are as follows: reproductive dysfunction among pregnant sows and high mortality rates among piglets. These pose a severe threat to the swine industry. Related studies show that IFN-α has broad applications in preventing and treating viral diseases. Therefore, a PRV mouse model using artificial infection was established in this study to explore the pathogenic effect of IFN-α on PRV. We designed a sequence with IFN-α4 (M28623, Genbank) and cloned it on the lentiviral vector. CHO-K1 cells were infected and identified using WB and RT-PCR; a CHO-K1 cell line with a stable expression of the recombinant protein PoIFN-α was successfully constructed. H&E staining and virus titer detection were used to investigate the recombinant protein PoIFN-α's effect on PR in BALB/c mice. The results show that the PoIFN-α has a preventive and therapeutic impact on PR. In conclusion, the recombinant protein can alleviate symptoms and reduce the replication of PRV in vivo.

6.
Infect Genet Evol ; 113: 105488, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558190

RESUMEN

Over the past 20 years, the Seneca Valley virus (SVV) has emerged in various countries and regions around the world. Infected pigs display symptoms similar to foot-and-mouth disease and other vesicular diseases, causing severe economic losses to affected countries. In recent years, the number of SVV infections has been increasing in Brazil, China, and the United States. In this study, we comprehensively analyzed SVV genomic sequence data from the perspectives of evolutionary dynamics, phylogeography, and codon usage bias. We aimed to gain further insights into SVV's genetic diversity, spatiotemporal distribution patterns, and evolutionary adaptations. Phylogenetic analysis revealed that SVV has evolved into eight distinct lineages. Based on the results of phylogeographic analysis, it is speculated that the United States might have been the source of SVV, from where it subsequently spread to different countries and regions. Moreover, our analysis of positive selection sites in SVV capsid proteins suggests their potential importance in the process of receptor recognition. Finally, codon preference analysis indicates that natural selection has been a primary evolutionary driver influencing SVV codon usage bias. In conclusion, our in-depth investigation into SVV's origin, dissemination, evolution, and adaptation emphasizes the significance of SVV surveillance and control measures.


Asunto(s)
Infecciones por Picornaviridae , Picornaviridae , Enfermedades de los Porcinos , Animales , Porcinos , Filogenia , Picornaviridae/genética
7.
Pathogens ; 11(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36558746

RESUMEN

African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells. In this study, RNA-seq technology was used to analyze the transcriptomic change in PAMs infected with ASFV at different time points (0 h, 12 h, 24 h). As a result, a total of 2748, 1570, and 560 genes were enriched in group V12 h vs. MOCK, V24 h vs. MOCK, and V24 h vs. V12 h, respectively. These DEGs (differentially expressed genes) in each group were mainly concentrated in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to innate immunization and inflammation, including the NF-κB signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, IL-17 signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Furthermore, the increased levels of IL-1ß, TNF-α, IKKß, CXCL2, and TRAF2 and decreased level of IκBα were validated through the qPCR method. These results suggested that ASFV infection can activate the NF-κB signaling pathway in the early stage. In general, this study provides a theoretical basis for further understanding the pathogenesis and immune escape mechanism of ASFV.

8.
Vaccines (Basel) ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36366327

RESUMEN

Foot-and-mouth disease (FMD) is a serious disease affecting the global graziery industry. Once an epidemic occurs, it can lead to economic and trade stagnation. In recent decades, FMD has been effectively controlled and even successfully eradicated in some countries or regions through mandatory vaccination with inactivated foot-and-mouth disease vaccines. Nevertheless, FMD still occurs in some parts of Africa and Asia. The transmission efficiency of foot-and-mouth disease is high. Both disease countries and disease-free countries should always be prepared to deal with outbreaks of FMD. The development of vaccines has played a key role in this regard. This paper summarizes the development of several promising vaccines including progress and design ideas. It also provides ways to develop a new generation of vaccines for FMDV and other major diseases.

9.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430608

RESUMEN

Porcine circovirus type 2 (PCV2) is capable of causing porcine circovirus-associated disease (PCVAD) and is one of the major threats to the global pig industry. The nucleocapsid protein Cap encoded by the PCV2 ORF2 gene is an ideal antigen for the development of PCV2 subunit vaccines, and its N-terminal nuclear localization sequence (NLS) structural domain is essential for the formation of self-assembling VLPs. In the present study, we systematically expressed and characterized full-length PCV2 Cap proteins fused to dominant T and B cell antigenic epitopes and porcine-derived CD154 molecules using baculovirus and found that the Cap proteins fusing epitopes were still capable of forming virus-like particles (VLPs). Both piglet and mice experiments showed that the Cap proteins fusing epitopes or paired with the molecular adjuvant CD154 were able to induce higher levels of humoral and cellular responses, particularly the secretion of PCV2-specific IFN-γ and IL-4. In addition, vaccination significantly reduced clinical signs and the viral load of PCV2 in the blood and tissues of challenged piglets. The results of the study provide new ideas for the development of a more efficient, safe and broad-spectrum next-generation PCV2 subunit vaccine.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Vacunas Virales , Animales , Ratones , Porcinos , Circovirus/genética , Epítopos de Linfocito B/metabolismo , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Proteínas de la Cápside/metabolismo , Anticuerpos Antivirales , Vacunas de Subunidad
10.
Front Microbiol ; 13: 1019876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386633

RESUMEN

Foot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler. Isothermal amplification methods including loop-mediated isothermal amplification and recombinase polymerase amplification developed in recent years are simple, rapid and do not require specialized equipment, allowing for point of care diagnostics. Luminex technology allows for simultaneous detection of multiple pathogens. CRISPR-Cas diagnostic systems also emerging nucleic acid detection technologies which are very sensitivity and specificity. In this paper, various nucleic acid detection methods aimed at vesicular disease pathogens in swine (including FMDV, SVA and SVDV) are summarized.

11.
Virulence ; 13(1): 1720-1740, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205528

RESUMEN

The host restriction factor serine incorporator 5 (SERINC5) plays a key role in inhibiting viral activity and has been shown to inhibit classical swine fever virus (CSFV) infection. However, the action of SERINC5 in the interaction between host cells and CSFV remains poorly understood. This study found that SERINC5 represses CSFV-induced autophagy through MAPK1/3-mTOR and AKT-mTOR signalling pathways. Further research showed that SERINC5 promotes apoptosis by repressing autophagy. Likewise, it was demonstrated that SERINC5 interacting proteins IFITM1/2/3 inhibit CSFV replication and regulate autophagy in a lysosomal-associated membrane protein LAMP1-dependent manner. In addition, IFITM1/2/3 interference promotes the NF-κB signalling pathway for potential immunoregulation by inhibiting autophagy. Finally, the functional silencing of IFITM1/2/3 genes was demonstrated to enhance the inhibitory effect of SERINC5 on autophagy. Taken together, These data uncover a novel mechanism through SERINC5 and its interacting proteins IFITM1/2/3, which mediates CSFV replication, and provides new avenues for controlling CSFV.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Apoptosis , Autofagia , Línea Celular , Virus de la Fiebre Porcina Clásica/fisiología , Proteínas de Membrana de los Lisosomas/farmacología , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Serina , Porcinos , Serina-Treonina Quinasas TOR , Replicación Viral
12.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077190

RESUMEN

Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.


Asunto(s)
COVID-19 , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Teorema de Bayes , Deltacoronavirus , Humanos , Filogeografía , Porcinos , Enfermedades de los Porcinos/epidemiología , Virus de la Gastroenteritis Transmisible/genética
13.
Life (Basel) ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36013434

RESUMEN

African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.

14.
Vaccines (Basel) ; 10(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36016192

RESUMEN

Japanese encephalitis is a mosquito-borne zoonotic epidemic caused by the Japanese encephalitis virus (JEV). JEV is not only the leading cause of Asian viral encephalitis, but also one of the leading causes of viral encephalitis worldwide. To understand the genetic evolution and E protein characteristics of JEV, 263 suspected porcine JE samples collected from South China from 2011 to 2018 were inspected. It was found that 78 aborted porcine fetuses were JEV-nucleic-acid-positive, with a positive rate of 29.7%. Furthermore, four JEV variants were isolated from JEV-nucleic-acid-positive materials, namely, CH/GD2011/2011, CH/GD2014/2014, CH/GD2015/2015, and CH/GD2018/2018. The cell culture and virus titer determination of four JEV isolates showed that four JEV isolates could proliferate stably in Vero cells, and the virus titer was as high as 108.5 TCID 50/mL. The whole-genome sequences of four JEV isolates were sequenced. Based on the phylogenetic analysis of the JEV E gene and whole genome, it was found that CH/GD2011/2011 and CH/GD2015/2015 belonged to the GIII type, while CH/GD2014/2014 and CH/GD2018/2018 belonged to the GI type, which was significantly different from that of the JEV classical strain CH/BJ-1/1995. Bioinformatics tools were used to analyze the E protein phosphorylation site, glycosylation site, B cell antigen epitope, and modeled 3D structures of E protein in four JEV isolates. The analysis of the prevalence of JEV and the biological function of E protein can provide a theoretical basis for the prevention and control of JEV and the design of antiviral drugs.

15.
Viruses ; 14(8)2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016432

RESUMEN

Foot-and-mouth disease virus (FMDV) is a highly contagious and devastating virus that infects cloven-hoofed livestock and various wildlife species. Vaccination is the best measure to prevent FMD. ADDomer, as a kind of non-infectious adenovirus-inspired nanoparticle, has the advantage of high thermal stability. In this study, two dominant B-cell antigen epitopes (residues 129~160 and 200~213) and a dominant T-cell antigen epitope (residues 16~44) of type O FMDV were inserted into the ADDomer variable loop (VL) and arginine-glycine-aspartic acid (RGD) loop. The 3D structure of the recombinant protein (ADDomer-RBT) was simulated by homology modeling. First, the recombinant proteins were expressed by the baculovirus expression system and detected by western blot and Q Exactive mass spectrometry. Then the formation of VLPs was observed under a transmission electron micrograph (TEM). Finally, we evaluated the immunogenicity of chimeric VLPs with a murine model. Bioinformatic software analysis preliminarily corroborated that the chosen epitopes were successfully exposed on the surface of ADDomer VLPs. The TEM assay demonstrated the structural integrity of the VLPs. After immunizing, it was found that FMDV-specific antibodies can be produced in mice to induce humoral and cellular immune responses. To sum up, the ADDomer platform can be used as an effective antigen carrier to deliver antigen epitopes. This study presents one of the candidate vaccines to prevent and control FMDV.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/genética , Epítopos de Linfocito B/genética , Epítopos de Linfocito T/genética , Virus de la Fiebre Aftosa/genética , Ratones , Vacunas Virales/genética
16.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455351

RESUMEN

Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.

17.
Life (Basel) ; 11(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34440506

RESUMEN

Porcine parvovirus (PPV) infection is the primary cause of SMEDI (stillbirth; mummification; embryonic death; infertility) syndrome, which is a global burden for the swine industry. Thus, it is crucial to establish a rapid and efficient detection method against PPV infection. In the present work, we developed a recombinase-aided amplification (RAA) assay, coupled with a lateral flow dipstick (LFD), to achieve an amplification of PPV DNA at 37 °C within 15 min. The detection limits of PPV RAA-LFD assay were 102 copies/µL recombinant plasmid pMD19-T-VP1, 6.38 × 10-7 ng/µL PPV DNA, and 10-1 TCID50/mL virus, respectively. This method was highly specific for PPV detection with no cross-reactivity for other swine pathogens. In contrast to polymerase chain reaction (PCR), the PPV RAA-LFD assay is more sensitive and cost-saving. Hence, the established PPV RAA-LFD assay provided an alternative for PPV detection, especially in resource-limited regions.

18.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923929

RESUMEN

Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infections could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival. Meanwhile, mitochondria can also play an antiviral role during viral infection, thereby protecting the host. Therefore, mitochondria play an important role in the interaction between the host and the virus. Herein, we summarize how viral infections affect microbial pathogenesis by altering mitochondrial morphology and function and how viruses escape the host immune response.


Asunto(s)
Inmunidad Innata/fisiología , Mitocondrias/metabolismo , Animales , Humanos , Inmunidad Celular , Inmunidad Innata/genética , Dinámicas Mitocondriales
19.
Front Microbiol ; 12: 673468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912152

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2019.02962.].

20.
Microorganisms ; 9(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917361

RESUMEN

Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA