Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inflamm Res ; 17: 3143-3157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774446

RESUMEN

Background: Diabetes impairs wound healing, notably in diabetic foot ulcers (DFU). Stress, marked by the accumulation of lipoylated mitochondrial enzymes and the depletion of Fe-S cluster proteins, triggers cuproptosis-a distinct form of cell death. The involvement of copper in the pathophysiology of DFU has been recognized, and currently, a copper-based therapeutic strategy is emerging as a viable option for enhancing ulcer healing. This study investigates genes linked to copper metabolism in DFU, aiming to uncover potential targets for therapeutic intervention. Methods: Two diabetic wound Gene Expression Omnibus (GEO) datasets were analyzed to study immune cell dysregulation in diabetic wounds. Differentially expressed genes related to copper metabolism were identified and analyzed using machine learning methods. Gene ontology, pathway enrichment, and immune infiltration analyses were performed using DFU samples. The expression of identified genes was validated using qRT-PCR and single-cell RNA sequencing. Results: Ten genes associated with copper metabolism were identified. Among these, SLC31A1 and ADNP were found to be significantly differentially expressed in DFU. Notably, SLC31A1 exhibited higher expression in macrophages, whereas ADNP was found to be highly expressed in fibroblasts and chondrocytes. Conclusion: The study indicates a close link between copper metabolism, the infiltration of immune cells, and DFU. It proposes that copper metabolism could influence the progression of DFU through the activation of immune responses. These observations offer fresh perspectives on the underlying mechanisms of DFU and identify potential targets for therapeutic intervention.

2.
Int Immunopharmacol ; 121: 110222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343367

RESUMEN

BACKGROUND AND PURPOSE: Panaxynol (PNN) is a common natural minor component in Umbelliferae plants. Many clinical studies have shown that PNN exhibits nutritional value and anti-inflammatory and other pharmacological activities. However, whether PNN can mediate cardiac ischemia/reperfusion injury (IRI) remains unclear. Here, we aimed to determine the potential effects of PNN on myocardial IRI. METHODS: Myocardial IRI was stimulated in a mouse IRI model, and neonatal rat ventricle myocytes (NRVMs) were exposed to hypoxia/reoxygenation to construct in an vitro model. Myocardial infarction size, myocardial tissue injury, myocardial apoptotic index, hemodynamic monitoring, pyroptosis-related proteins, cardiac enzyme activities and inflammatory responses were examined to assess myocardial injury. RESULTS: It was found that PNN administration markedly reduced myocardial infarct size and apoptosis, suppressed myocardial damage and cell pyroptosis, attenuated pro-inflammatory cytokines and neutrophil infiltration via NLRP3 inhibitor. More importantly, PNN treatment remarkably decreased the expression of TLR4/NF-κB pathway-associated proteins and NLRP3-related pyroptosis proteins by HMGB1 inhibitor. PNN also enhanced cell viability, reduced cardiac enzyme activities, suppressed apoptosis and attenuated inflammation in the isolated NRVMs. Furthermore, vitro studies indicated that MCC950 (a NLRP3 inhibitor) increased the anti-inflammatory and anti-apoptotic effects of PNN on NRVMs via HMGB1/TLR4 pathway. CONCLUSION: To sum up, our results demonstrate that PNN exhibits a cardioprotective effect by modulating heart IRI-induced apoptosis and pyroptosis via HMGB1/TLR4/NF-κB pathway, thereby inhibiting NLRP3 inflammasome stimulation.


Asunto(s)
Proteína HMGB1 , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Ratas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína HMGB1/metabolismo , Receptor Toll-Like 4/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Apoptosis , Miocitos Cardíacos/metabolismo , Inflamasomas/metabolismo , Infarto del Miocardio/metabolismo , Modelos Animales de Enfermedad
3.
Food Funct ; 13(23): 12077-12092, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36367287

RESUMEN

Aims: The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathological process of neointima formation after vascular injury. Galangin, an extract of the ginger plant galangal, is involved in numerous biological activities, including inhibiting the proliferation and migration of tumor cells, but its effect on VSMCs is unknown. This study focused on the role and mechanism of galangin in the neointima formation induced by vascular injury. Methods and results: In this study, we found that galangin restrained the PDGF-BB-induced proliferation, migration and phenotypic switching of VSMCs in a concentration-dependent manner. In vivo, we established a model of carotid artery balloon injury in rats, followed by intragastric administration of galangin (40 mg kg-1 day-1 or 80 mg kg-1 day-1) for 14 or 28 consecutive days. Then, the degree of neointima hyperplasia was evaluated by H&E staining, and the level of relevant protein expression was assessed by immunofluorescence and western blotting. In vitro, we isolated and grew primary rat aortic smooth muscle cells, which were treated with PDGF-BB and different doses of galangin, and then CCK-8 assay, wound healing assay, transwell assay, western blotting and immunofluorescence assays were performed. We found that galangin significantly inhibited PDGF-BB-induced proliferation, migration, and phenotypic switching of VSMCs and promoted autophagy in VSMCs in vitro, and galangin significantly inhibited neointimal hyperplasia after the common carotid artery balloon injury in rats. In terms of mechanisms, galangin inhibited the PI3K/AKT/mTOR pathway, thereby suppressing VSMC's switch from a contractile to a synthetic phenotype, inhibiting VSMC proliferation, migration and phenotypic switching and upregulating the Beclin1 protein expression levels and the ratio of LC3BII/I, promoting VSMC autophagy, and thereby inhibiting neointimal hyperplasia after vascular injury. Conclusion: Our study suggests that galangin inhibits neointimal hyperplasia after vascular injury by inhibiting smooth muscle cell proliferation, migration and phenotypic switching and by promoting autophagy, and that galangin may be a promising drug for the prevention and treatment of vascular restenosis after PCI.


Asunto(s)
Traumatismos de las Arterias Carótidas , Intervención Coronaria Percutánea , Lesiones del Sistema Vascular , Ratas , Animales , Neointima/tratamiento farmacológico , Neointima/metabolismo , Neointima/patología , Becaplermina/metabolismo , Becaplermina/farmacología , Becaplermina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Lesiones del Sistema Vascular/tratamiento farmacológico , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Músculo Liso Vascular , Hiperplasia/metabolismo , Hiperplasia/patología , Movimiento Celular , Proliferación Celular , Ratas Sprague-Dawley , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Miocitos del Músculo Liso , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Cultivadas
4.
Cardiovasc Toxicol ; 22(1): 88-96, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674150

RESUMEN

Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene delivery could prevent cardiac remodeling in diabetes mellitus remains unknown. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene delivery to test the effects of CNTF overexpression on adverse ventricular remodeling in streptozotocin-induced type 1 diabetic mice models. Postnatal (P3-P10) mice were peritoneally injected with AAV9 recombinant virus carrying the CNTF gene or EGFP gene. Then, type 1 diabetic models were established by peritoneal injection of streptozotocin (200 mg/kg) in 7-week-old female mice injected with AAV9. 4 weeks later after the establishment of type 1 diabetes mellitus, mouse hearts were removed to assess the degree of cardiac remodeling. We found that CNTF overexpression in mouse cardiomyocytes exacerbated cell apoptosis and cardiac fibrosis coupled with an increased inflammatory response in the heart tissue of diabetic female mice. Taken together, our results suggested that cardiac CNTF gene delivery may not be beneficial in alleviating adverse cardiac remodeling in type 1 diabetes female mice.


Asunto(s)
Factor Neurotrófico Ciliar/metabolismo , Dependovirus/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Animales , Apoptosis , Factor Neurotrófico Ciliar/genética , Citocinas/genética , Citocinas/metabolismo , Dependovirus/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Femenino , Fibrosis , Mediadores de Inflamación , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Estreptozocina , Regulación hacia Arriba
6.
Front Cardiovasc Med ; 8: 716219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712704

RESUMEN

Introduction: Myocardial infarction (MI) triggers structural and electrical remodeling. CC chemokine receptor 9 (CCR9) mediates chemotaxis of inflammatory cells in MI. In our previous study, CCR9 knockout has been found to improve structural remodeling after MI. Here, we further investigate the potential influence of CCR9 on electrical remodeling following MI in order to explore potential new measures to improve the prognosis of MI. Methods and Results: Mice was used and divided into four groups: CCR9+/+/Sham, CCR9-/-/Sham, CCR9+/+/MI, CCR9-/-/MI. Animals were used at 1 week after MI surgery. Cardiomyocytes in the infracted border zone were acutely dissociated and the whole-cell patch clamp was used to record action potential duration (APD), L-type calcium current (I Ca,L ) and transient outward potassium current (I to ). Calcium transient and sarcoplasmic reticulum (SR) calcium content under stimulation of Caffeine were measured in isolated cardiomyocytes by confocal microscopy. Multielectrode array (MEA) was used to measure the conduction of the left ventricle. The western-blot was performed for the expression level of connexin 43. We observed prolonged APD90, increased I Ca,L and decreased I to following MI, while CCR9 knockout attenuated these changes (APD90: 50.57 ± 6.51 ms in CCR9-/-/MI vs. 76.53 ± 5.98 ms in CCR9+/+/MI, p < 0.05; I Ca,L : -13.15 ± 0.86 pA/pF in CCR9-/-/MI group vs. -17.05 ± 1.11 pA/pF in CCR9+/+/MI, p < 0.05; I to : 4.01 ± 0.17 pA/pF in CCR9-/-/MI group vs. 2.71 ± 0.16 pA/pF in CCR9+/+/MI, p < 0.05). The confocal microscopy results revealed CCR9 knockout reversed the calcium transient and calcium content reduction in sarcoplasmic reticulum following MI. MEA measurements showed improved conduction velocity in CCR9-/-/MI mice (290.1 ± 34.47 cm/s in CCR9-/-/MI group vs. 113.2 ± 14.4 cm/s in CCR9+/+/MI group, p < 0.05). Western-blot results suggested connexin 43 expression was lowered after MI while CCR9 knockout improved its expression. Conclusion: This study shows CCR9 knockout prevents the electrical remodeling by normalizing ion currents, the calcium homeostasis, and the gap junction to maintain APD and the conduction function. It suggests CCR9 is a promising therapeutic target for MI-induced arrhythmia, which warrants further investigation.

7.
Mol Biol Rep ; 48(5): 3893-3901, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34032975

RESUMEN

Fluvastatin, a traditional fat-decreasing drug, is widely used for curing cardiovascular disease. Previous reports demonstrated that fluvastatin pretreatment protected against myocardial ischemia/reperfusion (I/R) by inhibiting TLR4 signaling pathway and/or reducing proinflammatory cytokines. However, whether fluvastatin has a cardioprotective effect against apoptosis and autophagy remains unknown. This study aims to evaluate whether the cardioprotective role of fluvastatin in I/R is mediated by high-mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) pathway via anti-apoptotic and anti-autophagic functions. Sprague-Dawley rats were anesthetized, artificially ventilated and subjected to 30 min of coronary occlusion, followed by 4 h of reperfusion. The animals were randomized into four groups: (i) Sham operation; (ii) I/R; (iii) I/R + low-dosage fluvastatin (10 mg/kg); and (iv) I/R + high-dosage fluvastatin (20 mg/kg). After reperfusion, the hemodynamic parameters, myocardial infarct size, structural alteration of myocardium, apoptosis index, pro-inflammatory cytokine production, Beclin-1, Light chain 3 (LC3), HMGB1, TLR4 and Nuclear factor kappa B (NF-κB) protein levels were measured and recorded. It was found that fluvastatin preconditioning improved left ventricular dysfunction, reduced HMGB1/TLR4/NF-κB expressions, and inhibited cardiomyocyte apoptosis, autophagy, and inflammation reaction. Moreover, treatment with fluvastatin ameliorated myocardial injury by reducing infarct size, causing less damage to cardiac structure, downregulating autophagy-related protein expression and releasing pro-inflammation mediators. Our findings indicate that fluvastatin exerts beneficial effects on cardiac ischemic damage, which may be associated with its anti-autophagic and anti-apoptotic functions via inhibition of HMGB1/TLR4-related pathway during I/R injury.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Fluvastatina/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , China , Fluvastatina/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Oncotarget ; 9(31): 22047-22057, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774121

RESUMEN

Myocardial fibrosis occurs in the late stages of many cardiovascular diseases, and appears to be stimulated by various microRNAs (miRNAs). We previously found that miR-33 may stimulate cardiac remodeling. Here, we examined the involvement of miR-33 in myocardial fibrosis. Proximal left coronary descending artery occlusion was performed in rat, and antagomiR-33a was injected. Primary cardiac fibroblasts were cultured and transfected with miR-33a mimics and inhibitors. miR-33a levels were increased in the rat after surgery, and collagen deposition and heart fibrosis were observed in vivo. Inhibition of miR-33a suppressed fibroblast proliferation, reduced the mRNA and protein levels of collagen-related markers in vitro and in vivo, and rescued the histological damage in vivo. A dual-luciferase reporter system showed that matrix metalloproteinase 16 (MMP16) gene was the direct target of MiR-33a. These results suggest that miR-33 promoted myocardial fibrosis by inhibiting MMP16 and stimulating p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. MiR-33 may act as a novel therapeutic target for treating myocardial fibrosis.

9.
Biochem Biophys Res Commun ; 499(2): 143-149, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29534968

RESUMEN

Regulator of G-protein signalling 5 (RGS5) is, highly expressed in different cell types of the adult human heart, and it is a negative regulator of G protein-mediated signalling that inactivates Gα(q) and Gα(i) and thereby inhibits many signalling pathways. However, the critical role of RGS5 in the pathology of myocardial infarction (MI) remains unexplored. Here, an in vitro MI model, induced by the permanent ligation of the left anterior descending coronary artery, was used with the isolated hearts of wild type (WT) and RGS5-knockout (KO) mice. Our results showed that the loss of RGS5 decreased the post-MI survival rate and left ventricular (LV) function and increased the infarct size. Additionally, the RGS5 knockout mice exhibited greater inflammation, apoptosis, and ventricular remodelling compared with WT-MI mice. Mechanistically, RGS5 loss activated the pathological response mainly by affecting the NF-κB and MAPK signalling pathways. Therefore, our data strongly indicate that RGS5 is a novel modulator of pathological progression after MI that functions NF-κB and MAPK signalling.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , FN-kappa B/metabolismo , Proteínas RGS/metabolismo , Remodelación Ventricular , Animales , Muerte Celular , Eliminación de Gen , Inflamación/complicaciones , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
10.
Int J Mol Med ; 38(3): 885-93, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27431018

RESUMEN

Toll-like receptor 4 (TLR4) serves as an important inducer of apoptotic and autophagic responses in myocardial ischemia/reperfusion (I/R) injury (MIRI). Radioprotective 105 kDa protein (RP105) is a specific inhibitor of TLR4. However, the molecular mechanisms by which RP105 represses myocardial apoptosis and autophagy through TLR4­mediated signaling during I/R have not yet been fully elucidated. Therefore, in the present study, we aimed to examine whether adenovirus-mediated RP105 overexpression repressed myocardial apoptosis and autophagy by inhibiting the TLR4-driven mechanism in MIRI. Three days after the injection of virus or saline into the myocardium, Sprague-Dawley (SD) rats were subjected to 30 min of left anterior descending coronary artery occlusion and 6 h of reperfusion. Myocardial specimens were prepared for analysis. We performed immunohistochemichal and histopathological analysis, the measurement of cardiac biomarkers, TUNEL assay , RT-qPCR and western blot analysis. The results indicated that the overexpression of RP105 contributed to an amelioration of myocardial histological damage, decreased leakage of creatine kinase (CK) and lactate dehydrogenase (LDH), as well as a reduction in the number of TUNEL-positive cardiomyocytes. The levels of positively associated modulators of apoptosis and autophagy were also significantly downregulated by RP105, whereas Bcl-2, which plays an opposite role in inducing apoptosis and autophagy, was inversely upregulated. Furthermore, the overexpression of RP105 led to the repression of TLR4 activity and the phosphorylation of NF-κB/p65, as well as the reduced production of the cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). Taken together, these data suggest that RP105 protects the myocardium against apoptosis and autophagy, and plays a cardioprotective role during I/R injury. This is most likely due to the inactivation of TLR4/NF-κB signaling pathway. Thus, RP105 may represent an innovative therapeutic target for attenuating MIRI.


Asunto(s)
Antígenos CD/metabolismo , Apoptosis , Autofagia , Daño por Reperfusión Miocárdica/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Antígenos CD/genética , Western Blotting , Creatina Quinasa/metabolismo , Interleucina-6/metabolismo , Masculino , Microscopía Fluorescente , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Ratas Sprague-Dawley , Ratas Transgénicas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
11.
Gene ; 527(1): 389-93, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23727604

RESUMEN

Toll-like receptor 4 (TLR4) and its ligand high mobility group box 1 (HMGB1), are known for playing central roles in ischemia-reperfusion injury in myocardium. However, the detailed mechanisms of TLR4 and HMGB1 are not fully understood. The aim of this study was to investigate the effects and possible mechanisms of the HMGB1-TLR4 axis and cardiomyocyte apoptosis on myocardial ischemic damage. Artificial oxygen ventilated anesthetized C3H/HeN mice and C3H/HeJ mice were subjected to 30 min of left anterior descending coronary artery occlusion followed by 6h of reperfusion. The myocardial infarct size, HMGB1 levels, apoptosis index, Bax, Bcl-2 and TNF-α mRNA levels were assessed. The results showed that a lowered amount of cardiomyocyte apoptosis and infarct size in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency notably inhibited the expression of HMGB1 and TNF-a, both of which were up-regulated by ischemia/reperfusion. These findings suggest that the HMGB1-TLR4 axis plays a pathogenic role in triggering cardiomyocyte apoptosis during myocardial I/R injury and that the possible mechanism for this process is the result of released cytokines and inflammatory response involved in the HMGB1/TLR4-related pathway.


Asunto(s)
Proteína HMGB1/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Apoptosis , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C3H , Daño por Reperfusión Miocárdica/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Int J Mol Med ; 31(4): 763-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23440289

RESUMEN

High mobility group box 1 (HMGB1), a non-histone DNA-binding protein, regulates nucleosome function and transcription in the nuclei of all metazoans and plants. However, extracellular HMGB1, which is actively or passively released under different conditions, can act as a key inflammatory mediator through MyD88/mitogen-activated protein kinase signaling by binding to its receptors including the receptor for advanced glycation end products or Toll-like receptors. A growing body of evidence indicates that HMGB1 plays an important role in kidney diseases, such as glomerulonephritis, lupus nephritis, antineutrophilic cytoplasmatic antibody-associated vaculitis, diabetic nephropathy, renal allograft rejection and acute kidney injury. In this review, we focus on the biology of HMGB1 and the association of HMGB1 with kidney diseases.


Asunto(s)
Proteína HMGB1 , Enfermedades Renales , Animales , Humanos , Ratones , Ratas
13.
Gene ; 509(1): 149-53, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22890140

RESUMEN

This study aimed to explore the role of high mobility group [corrected] box 1 (HMGB1) and its receptor toll like receptor 4 (TLR4) on neutrophils in myocardial ischemia reperfusion (I/R) injury. We constructed TLR4-mutant (C3H/HeJ) and control (C3H/HeN) mouse models of myocardial I/R injury and subjected the mice to 30 min of ischemia and 6h of reperfusion. Light microscope was used to observe structural changes in the myocardium. HMGB1 levels were measured using quantitative real-time PCR and immunohistochemistry. Neutrophil accumulation, TNF-a expression and IL-8 levels were analyzed via myeloperoxidase (MPO) biochemical studies, quantitative real-time PCR and ELISA, respectively. The results demonstrated that fewer neutrophils infiltrated in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency markedly decreased the ischemic injury caused by ischemia/reperfusion, and inhibited the expression of HMGB1, TNF-a, and IL-8, all of which were up-regulated by ischemia/reperfusion. These findings suggest that HMGB1 plays a central role in recruiting neutrophils during myocardial I/R leading to worsened myocardial I/R injury. This recruitment mechanism is possibly due to its inflammatory and chemokine functions based on the TLR4-dependent pathway.


Asunto(s)
Proteína HMGB1/fisiología , Daño por Reperfusión Miocárdica/fisiopatología , Infiltración Neutrófila/fisiología , Receptor Toll-Like 4/fisiología , Animales , Secuencia de Bases , Citocinas/genética , Citocinas/fisiología , Cartilla de ADN/genética , Proteína HMGB1/genética , Mediadores de Inflamación/fisiología , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Ratones Mutantes , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Infiltración Neutrófila/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba
14.
Mol Biol Rep ; 39(7): 7473-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22331486

RESUMEN

Interleukin (IL)-17 (also known as IL-17A), as the signature cytokine of the newly described T helper 17 (Th17) cell population, is the founding member of a new subclass of cytokines that have highly proinflammatory properties. Recently there is accumulating evidence that stipulates the involvement of IL-17 in the pathogenesis of cardiovascular diseases via amplifying the inflammation induced by other cytokines in synergistic interactions. The present review provides a summary of the potential roles of IL-17 in the context derived from both animal models and clinical settings in cardiovascular diseases, and perspectives for IL-17-targeted cytokine therapy.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Inflamación/inmunología , Interleucina-17/inmunología , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Interleucina-17/metabolismo , Ratones , Transducción de Señal , Células Th17/inmunología , Células Th17/metabolismo
15.
Saudi Med J ; 31(5): 486-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20464035

RESUMEN

High mobility group box-1 (HMGB1) is a highly conserved, ubiquitous protein in the nuclei and cytoplasm of almost all cells. After binding to its receptor, HMGB1, which is derived from necrotic cells and activated macrophages/monocytes, functions as a critical mediator of inflammation and promotes tissue repair and regeneration. Many recent studies demonstrated that HMGB1 played a pivotal role in cardiovascular diseases, such as atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and myocardial infarction. In this review, we focus on HMGB1 and summarize the association of HMGB1 with cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Proteína HMGB1/inmunología , Humanos , Mediadores de Inflamación/inmunología
16.
PLoS One ; 4(3): e4881, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19293927

RESUMEN

BACKGROUND: Deregulation of the phosphatidylinositol 3-kinases (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway plays a central role in tumor formation and progression, providing validated targets for cancer therapy. S9, a hybrid of alpha-methylene-gamma-lactone and 2-phenyl indole compound, possessed potent activity against this pathway. METHODOLOGY/PRINCIPAL FINDINGS: Effects of S9 on PI3K-Akt-mTOR pathway were determined by Western blot, immunofluorescence staining and in vitro kinas assay. The interactions between tubulin and S9 were investigated by polymerization assay, CD, and SPR assay. The potential binding modes between S9 and PI3K, mTOR or tubulin were analyzed by molecular modeling. Anti-tumor activity of S9 was evaluated in tumor cells and in nude mice bearing human cancer xenografts. S9 abrogated EGF-activated PI3K-Akt-mTOR signaling cascade and Akt translocation to cellular membrane in human tumor cells. S9 possessed inhibitory activity against both PI3K and mTOR with little effect on other tested 30 kinases. S9 also completely impeded hyper-phosphorylation of Akt as a feedback of inhibition of mTOR by rapamycin. S9 unexpectedly arrested cells in M phase other than G1 phase, which was distinct from compounds targeting PI3K-Akt-mTOR pathway. Further study revealed that S9 inhibited tubulin polymerization via binding to colchicine-binding site of tubulin and resulted in microtubule disturbance. Molecular modeling indicated that S9 could potentially bind to the kinase domains of PI3K p110alpha subunit and mTOR, and shared similar hydrophobic interactions with colchicines in the complex with tubulin. Moreover, S9 induced rapid apoptosis in tumor cell, which might reflect a synergistic cooperation between blockade of both PI3-Akt-mTOR signaling and tubulin cytoskeleton. Finally, S9 displayed potent antiproliferative activity in a panel of tumor cells originated from different tissue types including drug-resistant cells and in nude mice bearing human tumor xenografts. CONCLUSIONS/SIGNIFICANCE: Taken together, S9 targets both PI3K-Akt-mTOR signaling and microtubule cytoskeleton, which combinatorially contributes its antitumor activity and provides new clues for anticancer drug design and development.


Asunto(s)
4-Butirolactona/análogos & derivados , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Indoles/farmacología , Microtúbulos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , 4-Butirolactona/farmacología , Animales , Biocatálisis , Colchicina/metabolismo , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/química , Fosforilación , Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/química , Serina-Treonina Quinasas TOR , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...