Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2401916121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172788

RESUMEN

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Carbono/análisis , Suelo/química , Incertidumbre , Cambio Climático , Ecosistema , Bacterias/metabolismo , Secuestro de Carbono , Aprendizaje Automático , Ciclo del Carbono
2.
Glob Chang Biol ; 30(6): e17395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923190

RESUMEN

Soil microbes are essential for regulating carbon stocks under climate change. However, the uncertainty surrounding how microbial temperature responses control carbon losses under warming conditions highlights a significant gap in our climate change models. To address this issue, we conducted a fine-scale analysis of soil organic carbon composition under different temperature gradients and characterized the corresponding microbial growth and physiology across various paddy soils spanning 4000 km in China. Our results showed that warming altered the composition of organic matter, resulting in a reduction in carbohydrates of approximately 0.026% to 0.030% from humid subtropical regions to humid continental regions. These changes were attributed to a decrease in the proportion of cold-preferring bacteria, leading to significant soil carbon losses. Our findings suggest that intrinsic microbial temperature sensitivity plays a crucial role in determining the rate of soil organic carbon decomposition, providing insights into the temperature limitations faced by microbial activities and their impact on soil carbon-climate feedback.


Asunto(s)
Carbono , Cambio Climático , Microbiología del Suelo , Suelo , Temperatura , Suelo/química , Carbono/análisis , Carbono/metabolismo , China , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo
3.
J Agric Food Chem ; 72(14): 7765-7773, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556742

RESUMEN

Climate change affects the content and composition of soil organic carbon (SOC). However, warming-induced changes in the SOC compounds remain unknown. Using nuclear magnetic resonance spectroscopy, molecular mixing models, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed the variations and relationships in molecular compounds in Mollisol with 10-56 g C kg-1 soil-1 by translocating soils under six climate regimes. We found that increased temperature and precipitation were negatively correlated with carbohydrate versus lipid and lignin versus protein. The former was consistent across soils with varying SOC contents, but the latter decreased as the SOC content increased. The carbohydrate-lipid correlations were related to dithionite-citrate-extractable Fe, while the lignin-protein correlations were linked to changes in moisture and pyrophosphate-extractable Fe/Al. Our findings indicate that the reduction in the mineral protection of SOC is associated with molecular alterations in SOC under warming conditions.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Lignina , Lípidos , Carbohidratos
4.
Nat Food ; 4(10): 912-924, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37783790

RESUMEN

Aluminium (Al) toxicity impedes crop growth in acidic soils and is considered the second largest abiotic stress after drought for crops worldwide. Despite remarkable progress in understanding Al resistance in plants, it is still unknown whether and how the soil microbiota confers Al resistance to crops. Here we found that a synthetic community composed of highly Al-resistant bacterial strains isolated from the rice rhizosphere increased rice yield by 26.36% in acidic fields. The synthetic community harvested rhizodeposited carbon for successful proliferation and mitigated soil acidification and Al toxicity through extracellular protonation. The functional coordination between plants and microbes offers a promising way to increase the usage of legacy phosphorus in topsoil. These findings highlight the potential of microbial tools for advancing sustainable agriculture in acidic soils.


Asunto(s)
Microbiota , Oryza , Suelo , Fósforo , Aluminio/toxicidad , Productos Agrícolas , Ácidos
5.
New Phytol ; 239(2): 752-765, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149890

RESUMEN

Soil microbial inoculants are expected to boost crop productivity under climate change and soil degradation. However, the efficiency of native vs commercialized microbial inoculants in soils with different fertility and impacts on resident microbial communities remain unclear. We investigated the differential plant growth responses to native synthetic microbial community (SynCom) and commercial plant growth-promoting rhizobacteria (PGPR). We quantified the microbial colonization and dynamic of niche structure to emphasize the home-field advantages for native microbial inoculants. A native SynCom of 21 bacterial strains, originating from three typical agricultural soils, conferred a special advantage in promoting maize growth under low-fertility conditions. The root : shoot ratio of fresh weight increased by 78-121% with SynCom but only 23-86% with PGPRs. This phenotype correlated with the potential robust colonization of SynCom and positive interactions with the resident community. Niche breadth analysis revealed that SynCom inoculation induced a neutral disturbance to the niche structure. However, even PGPRs failed to colonize the natural soil, they decreased niche breadth and increased niche overlap by 59.2-62.4%, exacerbating competition. These results suggest that the home-field advantage of native microbes may serve as a basis for engineering crop microbiomes to support food production in widely distributed poor soils.


Asunto(s)
Inoculantes Agrícolas , Suelo , Suelo/química , Microbiología del Suelo , Agricultura , Bacterias , Raíces de Plantas/microbiología , Rizosfera
6.
Environ Res ; 222: 115298, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642122

RESUMEN

Plants can recruit soil microorganisms into the rhizosphere when experiencing various environmental stresses, including biotic (e.g., insect pests) and abiotic (e.g., heavy metal pollution, droughts, floods, and salinity) stresses. However, species coexistence in plant resistance has not received sufficient attention. Current research on microbial coexistence is only at the community scale, and there is a limited understanding of the interaction patterns between species, especially microbe‒microbe interactions. The relevant interaction patterns are limited to a few model strains. The coexisting microbial communities form a stable system involving complex nutritional competition, metabolic exchange, and even interdependent interactions. This pattern of coexistence can ultimately enhance plant stress tolerance. Hence, a systematic understanding of the coexistence pattern of rhizosphere microorganisms under stress is essential for the precise development and utilization of synthetic microbial communities and the achievement of efficient ecological control. Here, we integrated current analytical methods and introduced several new experimental methods to elucidate rhizosphere microbial coexistence patterns. Some advancements (e.g., network analysis, coculture experiments, and synthetic communities) that can be applied to plant stress resistance are also updated. This review aims to summarize the key role and potential application prospects of microbial coexistence in the resistance of plants to environmental stresses. Our suggestions, enhancing plant resistance with coexisting microbes, would allow us to gain further knowledge on plant-microbial and microbial-microbial functions, and facilitate translation to more effective measures.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Plantas , Suelo , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA