Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895486

RESUMEN

The striatum is required for normal action selection, movement, and sensorimotor learning. Although action-specific striatal ensembles have been well documented, it is not well understood how these ensembles are formed and how their dynamics may evolve throughout motor learning. Here we used longitudinal 2-photon Ca 2+ imaging of dorsal striatal neurons in head-fixed mice as they learned to self-generate locomotion. We observed a significant activation of both direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs, respectively) during early locomotion bouts and sessions that gradually decreased over time. For dSPNs, onset- and offset-ensembles were gradually refined from active motion-nonspecific cells. iSPN ensembles emerged from neurons initially active during opponent actions before becoming onset- or offset-specific. Our results show that as striatal ensembles are progressively refined, the number of active nonspecific striatal neurons decrease and the overall efficiency of the striatum information encoding for learned actions increases.

2.
Biosens Bioelectron ; 261: 116474, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38870827

RESUMEN

Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.

5.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37808666

RESUMEN

BACKGROUND: Developmental myelination is a protracted process in the mammalian brain. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age. We tested this hypothesis in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity. OBJECTIVES/METHODS: To prevent myelin progression, we conditionally deleted Myrf, a transcription factor necessary for oligodendrocyte maturation, from oligodendrocyte precursor cells (Myrf cKO) in adolescent mice. To induce experience-dependent plasticity, adult control and Myrf cKO mice were monocularly deprived by eyelid suture. Functional and structural neuronal plasticity in the visual cortex were assessed in vivo by intrinsic signal optical imaging and longitudinal two photon imaging of dendritic spines, respectively. RESULTS: During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. Myrf deletion from oligodendrocyte precursors during adolescence led to inhibition of oligodendrocyte maturation and myelination that persisted into adulthood. Following monocular deprivation, visual cortex activity in response to visual stimulation of the deprived eye remained stable in adult control mice, as expected for post-critical period animals. By contrast, visual cortex responses to the deprived eye decreased significantly following monocular deprivation in adult Myrf cKO mice, reminiscent of the plasticity observed in adolescent mice. Furthermore, visual cortex neurons in adult Myrf cKO mice had fewer dendritic spines and a higher level of spine turnover. Finally, monocular deprivation induced spatially coordinated spine size decreases in adult Myrf cKO, but not control, mice. CONCLUSIONS: These results demonstrate a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of myelin acting as a brake on neuronal plasticity during development.

6.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37572660

RESUMEN

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Asunto(s)
Vías Nerviosas , Conducta Sexual Animal , Animales , Masculino , Neuronas/fisiología , Recompensa , Conducta Sexual Animal/fisiología , Ratones
7.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37429962

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Asunto(s)
Encéfalo , Calcio , Animales , Ratones , Iluminación , Microscopía , Fotones
8.
Cell Rep ; 42(6): 112596, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37269288

RESUMEN

Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.


Asunto(s)
Células-Madre Neurales , Retina , Retina/metabolismo , Diferenciación Celular , División Celular , Organogénesis
9.
Nat Neurosci ; 26(6): 997-1007, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248337

RESUMEN

Endocannabinoids are among the most powerful modulators of synaptic transmission throughout the nervous system, and yet little is understood about the release of endocannabinoids from postsynaptic compartments. Here we report an unexpected finding that endocannabinoid release requires synucleins, key contributors to Parkinson's disease. We show that endocannabinoids are released postsynaptically by a synuclein-dependent and SNARE-dependent mechanism. Specifically, we found that synuclein deletion blocks endocannabinoid-dependent synaptic plasticity; this block is reversed by postsynaptic expression of wild-type but not of mutant α-synuclein. Whole-cell recordings and direct optical monitoring of endocannabinoid signaling suggest that the synuclein deletion specifically blocks endocannabinoid release. Given the presynaptic role of synucleins in regulating vesicle lifecycle, we hypothesize that endocannabinoids are released via a membrane interaction mechanism. Consistent with this hypothesis, postsynaptic expression of tetanus toxin light chain, which cleaves synaptobrevin SNAREs, also blocks endocannabinoid-dependent signaling. The unexpected finding that endocannabinoids are released via a synuclein-dependent mechanism is consistent with a general function of synucleins in membrane trafficking and adds a piece to the longstanding puzzle of how neurons release endocannabinoids to induce synaptic plasticity.


Asunto(s)
Endocannabinoides , Transducción de Señal , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Neuronas/fisiología , Comunicación Celular
10.
Mol Psychiatry ; 28(1): 434-447, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460726

RESUMEN

Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.


Asunto(s)
Cuerpo Estriado , Dinorfinas , Ratones , Animales , Dinorfinas/metabolismo , Cuerpo Estriado/metabolismo , Ganglios Basales , Potenciación a Largo Plazo , Plasticidad Neuronal/fisiología , Receptores Opioides kappa/genética , Receptores de Dopamina D1/metabolismo
11.
Nature ; 611(7937): 762-768, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352228

RESUMEN

The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.


Asunto(s)
Adenosina , Cuerpo Estriado , Proteínas Quinasas Dependientes de AMP Cíclico , Dopamina , Locomoción , Neuronas , Animales , Ratones , Adenosina/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Locomoción/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptor de Adenosina A2A/metabolismo
12.
Opt Express ; 30(15): 26396-26406, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236832

RESUMEN

Two-photon light-sheet fluorescence microscopy enables high-resolution imaging of neural activity in brain tissue at a high frame rate. Traditionally, light-sheet microscopy builds up a 3D stack by multiple depth scans with uniform spatial intervals, which substantially limits the volumetric imaging speed. Here, we introduce the depth random-access light-sheet microscopy, allowing rapid switching scanning depth for light-sheet imaging. With a low-cost electrically tunable lens and minimum modification of an existing two-photon light-sheet imaging instrument, we demonstrated fast random depth hopping light-sheet imaging at 100 frames per second in the live brain slice. Through depth random-access, calcium activities for an astrocyte were recorded on four user-selected detection planes at a refreshing rate of 25 Hz.


Asunto(s)
Calcio , Lentes , Encéfalo/diagnóstico por imagen , Microscopía Fluorescente/métodos , Fotones
13.
Neuron ; 110(18): 2889-2890, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137516

RESUMEN

Canonically, axons are considered the output structures of neurons, relaying signals generated at the dendrites and soma. In this issue of Neuron, Kramer et al. challenge this notion by showing that dopaminergic axons can be depolarized directly by cholinergic interneurons and even generate action potentials independent of somatic activity.


Asunto(s)
Dendritas , Dopamina , Potenciales de Acción/fisiología , Axones/fisiología , Colinérgicos , Dendritas/fisiología , Interneuronas/fisiología , Sinapsis/fisiología
14.
Neuron ; 110(17): 2790-2801.e5, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35809573

RESUMEN

Learning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1). We find that the degree of M1 engram neuron reactivation correlates with motor performance. We further demonstrate that learning-induced dendritic spine reorganization specifically occurs in these M1 engram neurons. In addition, we find that motor learning leads to an increase in the strength of M1 engram neuron outputs onto striatal spiny projection neurons (SPNs) and that these synapses form clusters along SPN dendrites. These results identify a highly specific synaptic plasticity during the formation of long-lasting motor memory traces in the corticostriatal circuit.


Asunto(s)
Cuerpo Estriado , Sinapsis , Animales , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Ratones , Neuronas Motoras , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
15.
J Neurosci ; 42(23): 4755-4765, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35534227

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Animales , Dopamina , Neuronas Dopaminérgicas/fisiología , Femenino , Leucina , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Ratones , Ratones Noqueados , Trastornos Motores/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
16.
J Biol Chem ; 298(4): 101674, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148987

RESUMEN

Adeno-associated viruses (AAVs) targeting specific cell types are powerful tools for studying distinct cell types in the central nervous system (CNS). Cis-regulatory modules (CRMs), e.g., enhancers, are highly cell-type-specific and can be integrated into AAVs to render cell type specificity. Chromatin accessibility has been commonly used to nominate CRMs, which have then been incorporated into AAVs and tested for cell type specificity in the CNS. However, chromatin accessibility data alone cannot accurately annotate active CRMs, as many chromatin-accessible CRMs are not active and fail to drive gene expression in vivo. Using available large-scale datasets on chromatin accessibility, such as those published by the ENCODE project, here we explored strategies to increase efficiency in identifying active CRMs for AAV-based cell-type-specific labeling and manipulation. We found that prescreening of chromatin-accessible putative CRMs based on the density of cell-type-specific transcription factor binding sites (TFBSs) can significantly increase efficiency in identifying active CRMs. In addition, generation of synthetic CRMs by stitching chromatin-accessible regions flanking cell-type-specific genes can render cell type specificity in many cases. Using these straightforward strategies, we generated AAVs that can target the extensively studied interneuron and glial cell types in the retina and brain. Both strategies utilize available genomic datasets and can be employed to generate AAVs targeting specific cell types in CNS without conducting comprehensive screening and sequencing experiments, making a step forward in cell-type-specific research.


Asunto(s)
Encéfalo , Dependovirus , Retina , Coloración y Etiquetado , Factores de Transcripción , Animales , Sitios de Unión , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Ratones , Retina/citología , Retina/metabolismo , Coloración y Etiquetado/métodos , Factores de Transcripción/metabolismo
17.
Neuron ; 109(20): 3298-3311.e4, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34437845

RESUMEN

Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB-/-). Pyramidal neuron dendrites in PirB-/- mice have increased spine formation rates and density. Surprisingly, PirB-/- mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB-/- mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.


Asunto(s)
Espinas Dendríticas , Aprendizaje/fisiología , Corteza Motora/metabolismo , Destreza Motora/fisiología , Plasticidad Neuronal/genética , Células Piramidales/metabolismo , Receptores Inmunológicos/genética , Animales , Ratones , Ratones Noqueados , Corteza Motora/citología , Receptores de N-Metil-D-Aspartato
18.
Science ; 370(6523)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335034

RESUMEN

How have complex brains evolved from simple circuits? Here we investigated brain region evolution at cell-type resolution in the cerebellar nuclei, the output structures of the cerebellum. Using single-nucleus RNA sequencing in mice, chickens, and humans, as well as STARmap spatial transcriptomic analysis and whole-central nervous system projection tracing, we identified a conserved cell-type set containing two region-specific excitatory neuron classes and three region-invariant inhibitory neuron classes. This set constitutes an archetypal cerebellar nucleus that was repeatedly duplicated to form new regions. The excitatory cell class that preferentially funnels information to lateral frontal cortices in mice becomes predominant in the massively expanded human lateral nucleus. Our data suggest a model of brain region evolution by duplication and divergence of entire cell-type sets.


Asunto(s)
Evolución Biológica , Núcleos Cerebelosos/citología , Neuronas/clasificación , Animales , Núcleos Cerebelosos/metabolismo , Pollos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , RNA-Seq
19.
Nat Commun ; 11(1): 1957, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327644

RESUMEN

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Asunto(s)
Neostriado/citología , Neuronas/fisiología , Núcleo Accumbens/citología , Receptores de Dopamina D2/metabolismo , Anfetamina/farmacología , Animales , Biomarcadores/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Dopaminérgicos/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neostriado/metabolismo , Neostriado/fisiología , Vías Nerviosas , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Receptores de Dopamina D2/genética
20.
Sci Adv ; 6(12): eaay2789, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32219158

RESUMEN

Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.


Asunto(s)
Electrónica , Procedimientos Analíticos en Microchip , Neuronas/fisiología , Animales , Electrónica/instrumentación , Electrónica/métodos , Diseño de Equipo , Dispositivos Laboratorio en un Chip , Ratones , Procedimientos Analíticos en Microchip/métodos , Microelectrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...