Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 308: 339-349, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170387

RESUMEN

Magnolol, the most abundant bioactive constituent of the Chinese herb Magnolia officinalis, has been found with multiple biological activities, including anti-oxidative, anti-inflammatory and enzyme-regulatory activities. In this study, the inhibitory effects and inhibition mechanism of magnolol on human carboxylesterases (hCEs), the key enzymes responsible for the hydrolytic metabolism of a variety of endogenous esters as well as ester-bearing drugs, have been well-investigated. The results demonstrate that magnolol strongly inhibits hCE1-mediated hydrolysis of various substrates, whereas the inhibition of hCE2 by magnolol is substrate-dependent, ranging from strong to moderate. Inhibition of intracellular hCE1 and hCE2 by magnolol was also investigated in living HepG2 cells, and the results showed that magnolol could strongly inhibit intracellular hCE1, while the inhibition of intracellular hCE2 was weak. Inhibition kinetic analyses and docking simulations revealed that magnolol inhibited both hCE1 and hCE2 in a mixed manner, which could be partially attributed to its binding at two distinct ligand-binding sites in each carboxylesterase, including the catalytic cavity and the regulatory domain. In addition, the potential risk of the metabolic interactions of magnolol via hCE1 inhibition was predicted on the basis of a series of available pharmacokinetic data and the inhibition constants. All these findings are very helpful in deciphering the metabolic interactions between magnolol and hCEs, and also very useful for avoiding deleterious interactions via inhibition of hCEs.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lignanos/metabolismo , Sitios de Unión , Biocatálisis , Compuestos de Bifenilo/química , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Dominio Catalítico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Células Hep G2 , Humanos , Hidrólisis , Cinética , Lignanos/química , Simulación del Acoplamiento Molecular
2.
Int J Biol Macromol ; 120(Pt B): 1944-1954, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30268757

RESUMEN

Human carboxylesterase 1 (hCE1) is a key enzyme responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters, but the highly selective inhibitors against hCE1 are rarely reported. This study aimed to assess the inhibitory effects of natural flavonoids against hCE1 and to find potential specific hCE1 inhibitors. To this end, fifty-eight natural flavonoids were collected and their inhibitory effects against both hCE1 and hCE2 were assayed. Among all tested compounds, nevadensin, an abundant natural constitute from Lysionotus pauciflorus Maxim., displayed the best combination of inhibition potency and selectivity towards hCE1. The inhibition mechanism of nevadensin on hCE1 was further investigated using two site-specific hCE1 substrates including D-luciferin methyl ester (DME) and 2­(2­benzoyloxy­3­methoxyphenyl)benzothiazole (BMBT). Furthermore, docking simulations demonstrated that the binding area of nevadensin on hCE1 was highly overlapped with that of DME but was far away from that of BMBT, which was highly consistent with the inhibition modes of nevadensin. These findings found a natural occurring specific inhibitor of hCE1, which could be served as a lead compound for the development of novel hCE1 inhibitor with improved properties, and also hold great promise for investigating hCE1-ligand interactions.


Asunto(s)
Productos Biológicos/farmacología , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Flavonas/farmacología , Productos Biológicos/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Flavonas/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica , Especificidad por Sustrato
3.
Int J Biol Macromol ; 118(Pt B): 2216-2223, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30009906

RESUMEN

Reduction of lipid absorption has been recognized as an attractive approach for the discovery of new drugs to treat obesity and overweight. The leave extract of Ginkgo biloba has been widely used for the treatment of metabolic diseases (such as hyperlipidemia) in both eastern and western countries, but the bioactive compounds in Ginkgo biloba and the underlying mechanism have not been fully characterized. This study aimed to investigate the inhibition potentials and mechanism of major biflavones from G. biloba on pancreatic lipase (PL), a key target regulating lipid absorption. The results clearly demonstrated that all tested biflavones in G. biloba including isoginkgetin, bilobetin, ginkgetin and sciadopitysin, displayed strong to moderate inhibitory effects on PL with the IC50 values ranging from 2.90 µM to 12.78 µM. Further investigations on both inhibition kinetic analyses and docking simulations demonstrated that isoginkgetin, bilobetin and ginkgetin were potent PL inhibitors (Ki < 2.5 µM), which could create strong interactions with the catalytic triad of PL via hydrogen bonding. These findings provided a new powerful evidence for explaining the hypolipidemic effects of G. biloba, while these newly identified PL inhibitors from G. biloba could serve as lead compounds for the development of biflavonoid-type PL inhibitors.


Asunto(s)
Biflavonoides/farmacología , Inhibidores Enzimáticos/farmacología , Ginkgo biloba/química , Lipasa/antagonistas & inhibidores , Páncreas/enzimología , Animales , Biflavonoides/química , Inhibidores Enzimáticos/química , Concentración 50 Inhibidora , Cinética , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Sus scrofa , Termodinámica
4.
Bioorg Chem ; 80: 577-584, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30032067

RESUMEN

Pancreatic lipase (PL), a key enzyme responsible for the hydrolysis of triacylglycerides in the gastrointestinal tract, has been identified as the therapeutic target for the regulation of lipid absorption. In the present study, six major constituents from a famous Chinese herbal medicine Cortex Mori Radicis (also named sangbaipi in Chinese), have been collected and their inhibitory effects on PL have been carefully investigated and well characterized by a fluorescence-based assay. The results clearly demonstrated that all tested bioactive constituents from Cortex Mori Radicis including sanggenone C (SC), sanggenone D (SD), kuwanon C (KC), kuwanon G (KG), morin and morusin displayed strong to moderate inhibitory effects towards PL with the IC50 values ranging from 0.77 µM to 20.56 µM. Further investigations on inhibition kinetics demonstrated that SC, SD, KC and KG functioned as potent and mixed inhibitors against PL-mediated 4-MU oleate hydrolysis, with the Ki values less than 5.0 µM. Furthermore, molecular docking simulations demonstrated that SD (the most potent PL inhibitor from Cortex Mori Radicis) could create strong interaction with Ser152 (the key amino acid in the catalytic triad) of PL via hydrogen bonding. All these findings provided a new powerful evidence for explaining the hypolipidemic effect of Cortex Mori Radicis, also suggested that some abundant natural compounds in this herbal medicine could be served as lead compounds for the development of new PL inhibitors.


Asunto(s)
Derivados del Benceno/farmacología , Benzofuranos/farmacología , Cromonas/farmacología , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Lipasa/antagonistas & inhibidores , Animales , Derivados del Benceno/química , Benzofuranos/química , Cromonas/química , Medicamentos Herbarios Chinos/química , Inhibidores Enzimáticos/química , Flavonoides/química , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Morus/química , Páncreas/enzimología , Porcinos
5.
Yao Xue Xue Bao ; 52(1): 58-65, 2017 01.
Artículo en Chino | MEDLINE | ID: mdl-29911769

RESUMEN

Carboxylesterase 1 (CE1) is an important serine hydrolase in mammals, which involved in the hydrolysis of a variety of compounds (endogenous substrates like cholesterol and xenobiotic compounds like ester-contain drugs and pesticides). This study aimed to design and develop the fluorescent probe substrates for human carboxylesterase 1 (hCE1), on the basis of the structural features of hCE1 preferred substrates. Four carboxylic esters deriving from BODIPY-8-carboxylic acid were designed and synthesized. After then, reaction phenotyping assays and chemical inhibition assays were used to evaluate the selectivity of these four ester derivatives towards hCE1. Our results clearly demonstrated that the substrate specificity of these ester substrates towards hCE1 would be improved with the decrease of the alcohol group on BODIPY-8-carboxylesters, while BODIPY-8-carboxylesters with small alcohol groups including methyl (BCM) and ethyl (BCE) esters could serve as the ideal probe substrates for hCE1. Given that BCM exhibit rapid hydrolytic rate in hCE1, we further investigate the enzymatic kinetics of this fluorescent probe substrate in both human liver microsomes (HLM) and recombinant hCE1, as well as to explore its potential application in high-throughput screening of hCE1 inhibitors by using HLM as enzyme source. The results showed that the kinetic behaviors and the affinity of BCM in HLM is much closed to those in recombinant hCE1, implying that hCE1 played the key roles in BCM hydrolysis in HLM. Furthermore, the inhibition study demonstrated that BCM could be used for rapid screening and characterization of hCE1 inhibitors, by using HLM to replace recombinant hCE1 as enzyme source.


Asunto(s)
Compuestos de Boro/química , Hidrolasas de Éster Carboxílico/química , Colorantes Fluorescentes , Ésteres , Humanos , Hidrólisis , Cinética , Microsomas Hepáticos/enzimología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA