Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(22): e202303656, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37016511

RESUMEN

Stable isotope chemical labeling methods have been widely used for high-throughput mass spectrometry (MS)-based quantitative proteomics in biological and clinical applications. However, the existing methods are far from meeting the requirements for high sensitivity detection. In the present study, a novel isobaric stable isotope N-phosphorylation labeling (iSIPL) strategy was developed for quantitative proteome analysis. The tryptic peptides were selectively labeled with iSIPL tag to generate the novel reporter ions containing phosphoramidate P-N bond with high intensities under lower collision energies. iSIPL strategy are suitable for peptide sequencing and quantitative analysis with high sensitivity and accuracy even for samples of limited quantity. Furthermore, iSIPL coupled with affinity purification and mass spectrometry was applied to measure the dynamics of cyclin dependent kinase 9 (CDK9) interactomes during transactivation of the HIV-1 provirus. The interaction of CDK9 with PARP13 was found to significantly decrease during Tat-induced activation of HIV-1 gene transcription, suggesting the effectiveness of iSIPL strategy in dynamic analysis of protein-protein interaction in vivo. More than that, the proposed iSIPL strategy would facilitate large-scale accurate quantitative proteomics by increasing multiplexing capability.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Fosforilación , Péptidos/química , Marcaje Isotópico/métodos , Isótopos
2.
Mar Drugs ; 21(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36976207

RESUMEN

Marine toxins (MTs) are a group of structurally complex natural products with unique toxicological and pharmacological activities. In the present study, two common shellfish toxins, okadaic acid (OA) (1) and OA methyl ester (2), were isolated from the cultured microalgae strain Prorocentrum lima PL11. OA can significantly activate the latent HIV but has severe toxicity. To obtain more tolerable and potent latency reversing agents (LRAs), we conducted the structural modification of OA by esterification, yielding one known compound (3) and four new derivatives (4-7). Flow cytometry-based HIV latency reversal activity screening showed that compound 7 possessed a stronger activity (EC50 = 46 ± 13.5 nM) but was less cytotoxic than OA. The preliminary structure-activity relationships (SARs) indicated that the carboxyl group in OA was essential for activity, while the esterification of carboxyl or free hydroxyls were beneficial for reducing cytotoxicity. A mechanistic study revealed that compound 7 promotes the dissociation of P-TEFb from the 7SK snRNP complex to reactivate latent HIV-1. Our study provides significant clues for OA-based HIV LRA discovery.


Asunto(s)
Dinoflagelados , Infecciones por VIH , VIH-1 , Humanos , Ácido Ocadaico/toxicidad , Latencia del Virus , Toxinas Marinas/química , Dinoflagelados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...