Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0279029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656826

RESUMEN

The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCß4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Potenciación a Largo Plazo/genética , Depresión , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Aprendizaje Espacial , Biología Computacional
2.
Cancer Lett ; 543: 215766, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35690285

RESUMEN

The occurrence and development of tumors depend on the tumor microenvironment (TME), which consists of various types of cellular and acellular components. Tumor-associated macrophages (TAMs) are the most abundant stromal cell types in the TME. The competition for nutrients between tumor cells and macrophages leads to a limited supply of nutrients, such as glucose, lipids, and amino acids, to immune cells, which affects the differentiation and function of macrophages. Other factors in the TME, such as cytokines, chemokines, and immune checkpoints, also affect the polarization and function of macrophages. Remodeling the tumor microenvironment induces changes in macrophage nutrient uptake and polarization status, which enhance anti-tumor immunity and oxidative stress resistance and suppress immune escape. This review summarizes the influence factors on tumor progression and immune function under different conditions of macrophages. It also demonstrates the metabolic heterogeneity and phenotypic plasticity of macrophages, which provides novel strategies for anti-tumor treatment.


Asunto(s)
Neoplasias , Microambiente Tumoral , Diferenciación Celular , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Neoplasias/patología
3.
Eur J Pharmacol ; 916: 174723, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34973953

RESUMEN

Over the past two decades, researchers have revealed the crucial functions of glutamine in supporting the hyperproliferation state of cancer cells. Glutamine acts on maintaining high energy production, supporting redox status and amino acid homeostasis. Therefore, cancer cells exhibit excessive uptake of the extracellular glutamine, synthesize it in some cases, and recycle intracellular and extracellular proteins to provide an additional source of glutamine to satisfy the increasing glutamine demand. On the other hand, autophagy's role is still debated regarding tumor initiation and progression. However, most cancer cells urgently need autophagy to overcome the existential threats during glutamine restriction stress. Downstream to various stress pathways induced during such a condition, autophagy is considered an indispensable cytoprotective tool to maintain cell integrity and survival. However, the overactivation of the autophagy process is related to lethal consequences. This review summarized glutamine pathways to control autophagy and highlighted autophagy's primary activation pathways, and discussed the roles during glutamine deprivation.


Asunto(s)
Glutamina , Neoplasias , Autofagia , Glutamina/metabolismo , Homeostasis , Humanos , Neoplasias/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA